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Abstract1

This study investigates difficulty-generating item characteristics (DGICs) in the 
context of basic arithmetic operations for numbers up to 100 to illustrate their use 
in item-generating systems for learning progress monitoring (LPM). The funda-
ment of the item-generating system is based on three theory-based DGICs: arith-
metic operation, the necessity of crossing 10, and the number of second-term dig-
its. The Rasch model (RM) and the linear logistic test model (LLTM) were used 
to estimate and predict the DGICs. The results indicate that under the LLTM ap-
proach all of the three hypothesized DGICs were significant predictors of item dif-
ficulty. Furthermore, the DGICs explain with 20% a solid part of the variance of 
the RM’s item parameters. The identification and verification of the DGICs under 
the LLTM approach provide important insights into how to address the challeng-
es in the development of future LPM tests in mathematics.
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Entwicklung eines Tests zur Lernverlaufsdiagnostik  
mit schwierigkeitsgenerierenden Merkmalen:  
Ein Beispiel für die Diagnose grundlegender 
arithmetischer Fertigkeiten in der Grundschule

Zusammenfassung
Diese Studie untersucht den Einfluss schwierigkeitsgenerierender Merkmale für 
die Gestaltung von Items zur Lernverlaufsdiagnostik arithmetischer Basiskompe-
tenzen im Zahlenraum bis 100. Das System zur Itemkonstruktion basiert dabei 
auf drei theoriegeleiteten schwierigkeitsgenerierenden Merkmalen: der verwen-
deten arithmetischen Operation, der Notwendigkeit des Zehnerübergangs, und 
der Stellenanzahl des zweiten Terms. Zur Schätzung und Vorhersage der Item-
parameter wurden das Rasch-Modell (RM) und das linear-logistische Testmodell 
(LLTM) verwendet. Die Ergebnisse des LLTM-Ansatzes deuten darauf hin, dass 
alle drei vermuteten schwierigkeitsgenerierenden Merkmale signifikante Prädik-
toren für die Itemschwierigkeit sind. Basierend auf den drei schwierigkeitsgene-
rierenden Merkmalen konnten 20% der Varianz der Itemschwierigkeitsparame-
ter des RM erklärt werden. Diese Studie verdeutlicht, dass die Identifikation und 
Prüfung schwierigkeitsgenerierender Merkmale wichtige Erkenntnisse liefern, wie 
Herausforderungen bei der Entwicklung zukünftiger Tests zur Lernverlaufsdiag-
nostik in Mathematik berücksichtigt werden können.

Schlagworte
Lernverlaufsdiagnostik, Rasch-Modell (RM), Linear-logistisches Testmodell 
(LLTM), itemgenerierende Regeln, elementare Arithmetik

1. Introduction

Learning progress monitoring (LPM) represents an increasingly popular approach 
for assessing, monitoring, and visualizing students’ individual learning develop-
ment with short, high-frequency and easy-to-handle tests (e.g., Fuchs et al., 2019). 
With the results of LPM, teachers obtain insights into students’ learning processes, 
which facilitates the early identification of emerging learning problems. Further-
more, LPM can support teachers in evaluating the success of implemented learning 
programs (e.g., Deno, 2003). Recent research also concludes that LPM in the digi-
tal form, managed as a computer-based or web-based tool, offers a more econom-
ical usability in school practice (Mühling et al., 2019; Souvignier, 2018). Previous 
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research on the systematic use of LPM also showed positive effects on students’ 
learning achievements (e.g., Förster & Souvignier, 2015; Stecker et al., 2005).

Despite the usefulness of LPM, the development of adequate LPM instruments 
is challenging, as they have to fulfil a number of specific psychometric criteria. In 
particular, the valid measurement of learning processes requires a large number 
of parallel tests that are comparable in difficulty and dimensionality (e.g., Wilbert, 
2014; Wilbert & Linnemann, 2011). Parallel, but non-identical tests are needed be-
cause of memory effects as well as practice effects that may otherwise confound the 
probability of solving items. Accordingly, homogeneity of test difficulty is a crucial 
prerequisite for LPM. Learning development can only be reasonably measured if 
it is ensured that the parallel tests are of equal difficulty. To address this require-
ment, a large number of test items with the same difficulty is required, which can 
then be distributed systematically across parallel test versions to avoid memory or 
practice effects. Knowledge about the characteristics that influence the difficulty of 
a test item can significantly support this item generation system. Therefore, LPM 
instruments need not only to fulfil the classical test quality criteria (e.g., validity, 
reliability), but also one-dimensionality, homogeneous test difficulty, test fairness, 
and sensitivity to change (Wilbert, 2014). To ensure validity when selecting suita-
ble test items, the construction of LPM instruments relies on two approaches: the 
robust indicator approach and the curriculum sampling approach (Fuchs, 2004). 
Finding robust indicators involves choosing tasks that best represent the various 
subskills of a specific domain or correlate strongly with them. Using the curricu-
lum sampling approach, typical tasks are selected that represent curricular require-
ments over a school year. For each LPM test, students receive tasks based on the 
learning goals of an entire school year. 

Regardless of the procedure used for developing the LPM, a theory-based sys-
tematical item design and an empirical validation of LPM using item response the-
ory (IRT) approaches are often lacking (e.g., Wilbert & Linnemann, 2011). So far, 
a framework for the systematic item design of LPM measures that explicitly links 
information about cognitive operations needed to solve an item and their corre-
spondence in item characteristics with LPM development has not yet been estab-
lished. To generate and select items for LPM, Wilbert (2014) proposes the use of 
linear extensions of the Rasch model (Rasch, 1980) such as the linear logistic test 
model (LLTM; Fischer, 1973; Fischer & Molenaar, 1995).

For mathematics, a large part of the research in LPM has focused on computa-
tion in primary schools (e.g., Foegen et al., 2007; Hartmann & Müller, 2014; Hosp 
et al., 2016; Tindal, 2013). In a review of LPM in the field of mathematics compu-
tation, Christ et al. (2008) emphasize the need for a framework to achieve high-
er and more consistent reliability and validity of measurements. Currently, there 
is still a gap of implementation and evaluation of a theory-based item-generating 
system for LPM. For the domain of elementary arithmetic, characteristics that in-
fluence item parameters are already considered in item selection for parallel LPM 
tests (e.g., Hartmann & Müller, 2014; Sikora & Voß, 2017). However, there is still a 
lack of systematic item design based on statistical evaluations. At present, there is 
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little literature available on the investigation of difficulty-generating item charac-
teristics (DGICs) in the area of basic mathematical competencies that can be used 
for systematic LPM item construction (e.g., Balt et al., 2020). The present study 
addresses this research gap by focusing on the design and evaluation of an item 
generation system, applying theory-based modeling of item complexity using LLTM 
to analyze items exemplarily for an LPM addition and subtraction test for numbers 
up to 100. The present paper is therefore structured as follows: Firstly, we give a 
brief introduction of rule-based item design using LLTM. Secondly, based on this, 
we provide an overview of the characteristics affecting the difficulty of basic arith-
metic operations. Building on this, we describe a rule-based item design of arith-
metic basic skills for numbers up to 100. Furthermore, we present a study in which 
this rule-based item design is utilized in order to assess the difficulty of three item 
characteristics. Finally, we discuss as to what extent rule-based item design using 
LLTM is useful for the construction and evaluation of LPM instruments.

2. Rule-Based Item Generation With LLTM

Rule-based item design is a method from the research area of automatic item gen-
eration (AIG; e.g., Gierl & Haladyna, 2013; Irvine & Kyllonen, 2002) and rests 
upon the combination of findings from cognitive psychology and psychometric the-
ory. AIG addresses the increased need for large pools of construct valid test items 
due to the ongoing trend towards computer- or web-based assessments. In rule-
based item generation, difficulty characteristics are identified in advance and tested 
empirically. Knowledge about difficulty characteristics has several advantages: the 
increase of construct validity, the identification of templates that can be used for 
time-economical item design, or the opportunity of a content valid interpretation 
of test results (e.g., Arendasy et al., 2006; Kubinger, 2008). Rule-based item de-
sign is also particularly well suited for computer-supported algorithmic item gen-
eration (e.g., Geerlings et al., 2011) and of particular interest for the use of LPM 
in teaching as the tests require many items to measure students’ learning devel-
opment over a longer period (e.g., Wilbert, 2014). In a first step, the cognitive op-
erations required to solve a specific task are identified. Subsequently, item models 
are generated that reflect the identified cognitive operations. This procedure ena-
bles the identification and evaluation of the considered cognitive operations nec-
essary to solve a specific task, which are used to determine DGICs and, ultimately, 
the predicted probability of solving an item.

The design of items and instruments for LPM is particularly difficult as the 
use of LPM with multiple parallel tests over a period of time places specific de-
mands on the underlying test theory. For this, IRT models are recommended (e.g., 
Anderson et al., 2011; Wilbert, 2014; Wilbert & Linnemann, 2011). IRT is an ap-
proach that determines the probability of solution for each item in a test, taking 
into account the ability of test takers based on their response behavior (Reise et al., 
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2005). The response behavior (solving or not solving a task) then depends on both 
the individual characteristics of the person (person parameter) and the difficulty of 
the task (item parameter). A frequently used IRT model is the Rasch model (RM; 
Rasch, 1980).

The model equation of the RM for dichotomous data is:

It is assumed that the probability P that person v solves item i depends on the per-
son’s ability (θv) as well as the item’s difficulty (σi). Item parameter and person pa-
rameter are estimated in the RM for dichotomous data based on manifest response 
behavior.

An IRT model suitable for analyzing the difficulty of cognitive operations in 
rule-based items is the LLTM (Fischer, 1973; Fischer & Molenaar, 1995). LLTM al-
lows the estimation of multiple basic parameters (DGICs) that are, based on a the-
oretical model and prior research, assumed to drive an item’s difficulty. Knowledge 
about DGICs enables the prediction of the difficulty for newly developed items and, 
by considering different DGICs, items of various difficulty (within a certain range) 
can be easily generated. The LLTM breaks down the item parameter into a lin-
ear combination of specific hypothesized DGICs. Each DGIC involved in an item 
changes its difficulty. The total difficulty is the weighted sum of the DGICs.

In the LLTM the item’s difficulty can be expressed as:
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be used for automatic item generation (e.g., Embretson & Kingston, 2018).
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3. Specification of an Item-Generating System for Basic 
Arithmetic Operations for Numbers up to 100

3.1 Research on Students’ Strategies and Difficulties in Addition 
and Subtraction

Addition and subtraction are the two algebraic operations introduced first in pri-
mary school, often in the first two grades. Although they can be interpreted as very 
basic, research evidence indicates that multi-digit addition and subtraction, for ex-
ample 76 + 15 or 97 – 48, is challenging for many children, especially for low-per-
formers and children with learning disabilities (Hickendorff et al., 2019). There are 
not only performance problems, but also differences in learning development. In 
their meta-analysis, Reilly et al. (2015) showed that there have been small but sta-
ble mean gender differences in favor of boys in mathematics over the past two dec-
ades.

Generally, children starting school are already able to solve simple addition 
and subtraction problems, for example by using counting strategies (e.g., Baroody, 
1987), and results indicate that first graders’ capabilities to solve such tasks are of-
ten underestimated (see further Baroody et al., 2006; Clarke et al., 2006). Howev-
er, when expanding addition and subtraction to numbers up to 20 and then 100, 
these initial strategies often cannot be applied anymore or are time-consuming 
and effortful. Thus, enabling students to solve multi-digit addition and subtraction 
problems and providing efficient solution strategies for such tasks are among the 
most important goals in initial primary school mathematics education (e.g., Karp et 
al., 2011; National Council of Teachers of Mathematics, 2000, 2006). How ever, re-
search has underlined that corresponding tasks, as for instance 14 + 23 or 90 – 23, 
vary considerably in their difficulty. This is attributed to students’ varying use of 
different solution strategies, for example, number-based strategies or digit-based 
strategies (see Hickendorff et al., 2019, for an elaborate framework of correspond-
ent strategies) as well as to different task characteristics (see also Daroczy et al., 
2015, for a more general review on factors contributing to word problems’ difficul-
ty). For the construction of LPM items, the task characteristics are of particular in-
terest, as they can easily be used for a rule-based item construction. In contrast, it 
is difficult to create items based on different solution strategies as students decide 
on their individual solution strategy during the problem-solving process, and even 
if tasks trigger a certain strategy for some learners, for example 39 + 47, they may 
not equally trigger this strategy for other learners in the same way. In this regard, 
research has repeatedly underlined students’ heterogeneity, regarding both their 
individual capabilities for solving addition and subtraction tasks and (obviously re-
lated) their use of various solution strategies (see Baroody et al., 2006; Benz, 2005; 
Cooper et al., 1996; Verschaffel et al., 2007).

There are multiple characteristics of multi-digit addition and subtraction tasks 
up to 100 that can be interpreted in the sense of DGICs. Often mentioned, funda-
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mental DGICs are (a) the arithmetic operation itself, that is addition and subtrac-
tion (e.g., Beishuizen, 1993; Cooper et al., 1996; Selter, 2001), (b) the necessity of 
crossing 10, that is the necessity to coordinate between ones and 10s as different 
places in the place-value notation during the operation as the addition/subtraction 
of the ones is not within the range of 0 to 9 (e.g., Beishuizen et al., 1997; Cooper 
et al., 1996; Fiori & Zuccheri, 2005), as well as (c) the number of second-term dig-
its in the operation, that is either a one- or two-digit addend or subtrahend (e.g., 
Cooper et al., 1996). Multiple example items are given below.

A study by Benz (2005) revealed great differences in students’ solution rates be-
tween tasks with different DGICs. First of all, her data revealed significant differ-
ences between addition and subtraction tasks, especially towards the end of the 
second grade and when presented without contextualization (i.e., no word prob-
lems). Based on her data, she suspects that differences between the solution rates 
for tasks with either operation are lower when informal strategies are applied, 
again highlighting the impact of different solution strategies on item difficulty. 
Moreover, her data also underlines that tasks with the necessity of crossing 10, for 
example 27 + 35 that requires the calculation of 7 + 5 = 12 and thus leads to a 
“crossing of 10” based on the addition of the ones, were less likely to be solved 
than those without that necessity. Finally, tasks including a second term with two 
digits were generally less likely to be solved for both arithmetic operations in com-
parison to tasks with one-digit second terms.

Beyond these three DGICs, research gives (mostly theoretical or qualitative) ev-
idence of multiple other DGICs, implying, for example, that the addition and sub-
traction of multiples of 10s, for example, 30 + 20 or 50 – 30, is generally easi-
er than tasks as for instance 32 + 24 or 57 – 33, which are comparable regarding 
the three DGICs pointed out above (i.e., no necessity of crossing 10 and includ-
ing second terms with two digits) or that the addition resulting in a multiple of 10, 
for example, 53 + 7 or 56 – 6, is easier than other addition tasks with the necessi-
ty of crossing 10 even further, for example, 18 + 3. Moreover, the task 51 – 3 would 
be classified as being easier than 50 – 30 based on the DGIC that tasks with sec-
ond terms with only one digit are easier than tasks with two second-term digits but 
classified as more difficult than 50 – 30 due to the necessity of crossing 10. These 
examples underline that concentrating on few, rather general DGICs can help to 
structure the difficulty of tasks and may allow for an easy item classification – and 
in the context of LPM easily comprehensible feedback for teachers and students. 
However, to accurately determine the difficulty of items, for example in research 
contexts, (a) more DGICs would have to be used and (b) in particular not only 
additively, but also including interactions. This would lead to a higher explained 
variance and thus a better classification of the items’ difficulties, which would be 
favorable from a research perspective. However, giving teachers feedback on stu-
dents’ skills based on (e.g.) 10 DGICs and higher-level interactions appears unre-
alistic. Thus, using few central DGICs to explain a relevant portion of variance in 
order to give teachers a good first indication on how to support students seems in-
dicated.
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Overall, although DGICs can be used to approximate the difficulty of tasks and 
are useful in task construction, empirical evidence of the exact magnitude of the 
DGICs of addition and subtraction tasks is still lacking, as there are mostly only 
general tendencies regarding the higher importance of some DGICs over others.

3.2 Item Design of the Current Study

Based on the findings from prior mathematics education research, DGICs of ad-
dition and subtraction problems for numbers up to 100 can be identified. For the 
current study, three important characteristics were used to model the difficulty of 
the items: the arithmetic operation (addition versus subtraction; DGIC 1), the ne-
cessity of crossing 10 (no crossing versus with crossing; DGIC 2), and the num-
ber of second-term digits (one-digit number versus two-digit numbers; DGIC 3). 
Therefore, the items used in this study consisted of mixed addition and subtrac-
tion problems including addition tasks with two one-digit numbers (e.g., 7 + 4), a 
one-digit and a two-digit number (e.g., 24 + 5), or the addition of 2 two-digit num-
bers (e.g., 47 + 26), and subtraction tasks with a one-digit or a two-digit number 
(e.g., 16 – 7) or 2 two-digit numbers (e.g., 78 – 49). For the tasks, the value of the 
individual digits varied between 0 and 9. For all problems, a fill-in-the-blank for-
mat was used, with the correct answer always being missing. Furthermore, there 
were tasks with and without crossing the tens barrier as well as tasks to the next 
10.

Table 1 exemplifies the design matrix (see also Appendix Table A1) for the 
computation test with three exemplary items and the three dichotomously scored  
DGICs arithmetic operation (DGIC 1), necessity of crossing 10 (DGIC 2), and num-
ber of second-term digits (DGIC 3). The item number refers to the position of the 
item in the test. The 0s and 1s are the specified weights of the DGICs for each item. 
For the DGIC 1 (arithmetic operation), a weight of 0 represents addition, a weight 
of 1 represents subtraction. A weight of 0 for the DGIC 2 (necessity of crossing 10) 
means that crossing 10 is not necessary for solving the item, whereas with a weight 
of 1 it is. The items with a weight of 0 for the DGIC 3 (number of second-term dig-
its) have a one-digit second term, a weight of 1 shows that the second term has two 
digits. For example, Item 5 (56 + 3 = 59) neither includes a subtraction nor the ne-
cessity of crossing 10 nor a two-digit subtrahend. Thus, all weights for this item are 
0. In contrast, Item 7 (43 + 9 = 52) includes the crossing of a 10. Consequently, the 
weight matrix includes a 1 for the crossing of a 10 for this item, otherwise 0s.
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Table 1: Exemplary Design Matrix for Items 5, 7, and 8

Item number DGIC 1 DGIC 2 DGIC 3 Item

5 0 0 0 56 + 3 = 59

7 0 1 0 43 + 9 = 52

8 1 1 1 32 – 17 = 15

Note. DGIC = difficulty-generating item characteristic.

Based to the three DGICs of the design matrix in Table 1, a pool of 80 items was 
generated. The three DGICs were varied within the item design process so that all 
possible combinations were adequately represented in the item pool (with three 
DGICs, eight different combinations were considered; see the design matrix for the 
first 41 items included in the further analyses in the Appendix Table A1).

4. Research Questions

To test the construct validity of the model, the characteristics of the items in terms 
of DGICs and the statistical properties of the items were associated. The hypothet-
ically assumed rule-based difficulty-generating item characteristics have to explain 
the RM’s item difficulty parameters. In addition, there is the assumption that dif-
ferences in gender will become apparent. We followed two central research ques-
tions:

Research Question 1: Do the three difficulty-generating item characteristics 
(DGICs) that were used to create the test items influence their difficulty? 

In reference to Question 1, we hypothesized that the three identified DGICs 
have significant influence on the difficulty of the items as indicated by prior mathe-
matics education research (e.g., Benz, 2005).

Research Question 2: How much variance is explained by the LLTM model with 
the three DGICs? 

With regard to Question 2, we hypothesized that the three identified DGICs 
have a significant impact in variance explanation of the RM’s item difficulty param-
eters. However, prior research has underlined the existence of multiple other DG-
ICs and the importance of their interrelation for an exact estimation of item dif-
ficulty. Moreover, research has underlined that item characteristics are only one 
aspect influencing item difficulty and that students’ solving strategies are also im-
portant for item difficulty. This led us to hypothesize that the variance explanation 
might be somewhere between 10% (i.e., clearly above 0) and 50% (i.e., still leaving 
much room for other DGICs, strategies, and other variables for variance explana-
tion).
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5. Method

5.1 Participants

The sample consisted of N = 591 students (Mage = 8.80, SD = 0.76; boys: 52.28%, 
girls: 47.72%; 9.14% of the students with special educational needs) in Grade 2 
(n = 205; 34.69%) and 3 (n = 386; 65.31%) from 13 German primary schools in 
North Rhine-Westphalia (28 classes). All students who did not reach at least 5 
items were excluded from the analysis as reasonable participation in the test could 
not be guaranteed and students might have been unwilling to participate. Overall, 
n = 10 participants (1.69%) were excluded.

5.2 Measures

Prior to the study, a first test with fixed order was created based on a pool of 80 
items, which included all eight possible combinations of the three DGICs. The fixed 
order was chosen to safeguard that participants worked on each combination reg-
ularly. The test was implemented on the online platform Levumi (www.levumi.de; 
Gebhardt et al., 2016; Mühling et al., 2019). Between October 2019 and January 
2020, the students were tested in their classrooms in groups of 10. To perform 
the test, each participating student used a tablet device. The test time was 5 min-
utes. At the beginning, the students received a brief technical instruction, an exam-
ple item was solved, and the students were given the opportunity to ask the test su-
pervisor questions. Students could start the test themselves by clicking on the start 
button. After the test time had expired, the test ended automatically. This way the 
test cannot be considered a power test due to the restricted time but is rather a 
long speed test.

5.3  Statistical Analyses 

The participants were not expected to solve nearly as many items as the test con-
tained in the given 5-minute testing time as the high number of items was creat-
ed to also account for exceptionally good students. Accordingly, most students did 
not answer all items. The mean number of items answered was 18.48 (SD = 9.59, 
min = 1, max = 67). For the analyses, only items that were answered by at least 
20 students were used to ensure an adequate model estimation. Thus, 41 items 
were included in the analyses (see the descriptive statistics in the Appendix Ta-
ble A2). RM is a prerequisite to conduct LLTM for item analysis and model com-
parisons. The following computations were all done with the package eRM (Mair & 
Hatzinger, 2007). Thus, a dichotomous RM was fitted. The occurrence of missings 
is calculated and pooled separately for each subgroup (by NA structure) in eRM 
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(Mair & Hatzinger, 2007). In our understanding, items that are answered more of-
ten should not be weighted more heavily that way. To evaluate the items of the 
test, the item fit was evaluated by infit and outfit statistics. Items with infit and 
outfit values below 0.5 and above 1.5 (Wright & Linacre, 1994) were excluded. This 
resulted in an additional item exclusion of five items, namely Items 32, 34, 36, 38, 
and 41 (see Appendix Table A2). Item 33 was also excluded due to inappropriate 
response patterns within subgroups, leaving 581 cases and 35 items. The reliabili-
ty of the resulting weighted maximum likelihood estimation (WLE) person param-
eters reached .82.

The package eRM employs a conditional maximum likelihood approach for pa-
rameter estimation. There are different ways of testing the appropriateness of an 
RM. In this paper, the likelihood ratio test (LRT; Andersen, 1973; Kubinger, 1989), 
the graphical model test (Rasch, 1980), and a Wald-type test (Glas & Verhelst, 
1995) are applied. The LRT is a global test of model fit that checks the assump-
tion of equality of the item parameters between subpopulations. A significant result 
were differences in the global item parameters between groups. An LRT with a me-
dian split resulted in a LRT-value of 32.24 (df = 34, p = .554), an LRT with a mean 
split in 44.80 (df = 34, p = .102), thus showing no significant differences in item 
parameters between these subgroups. In the graphical model test, the estimated 
item parameters of the median-split subgroups are compared against each other 
(Figure 1). The ellipses indicate the size of the confidence intervals.

Figure 1: Graphical Model Check of Items for Addition and Subtraction of Numbers up to 
100
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Though the confidence intervals vary in magnitude due to sparse data because of 
the item location in the test, nearly all item’s ellipses are split by the bisecting an-
gle, indicating equal item parameters between the groups. The Wald test specifies 
the analysis on the item level. Here, all items are analyzed individually. The Wald 
tests (split criteria: median; mean) showed significant differences in the difficulties 
of two items in median-split subgroups (Item 8 and Item 11) and two items (Item 
3 and Item 14) in a mean-split subgroup. The items were kept because the infit and 
outfit values of the item fit statistics showed that they do not have to be deemed 
detrimental. The final item parameters are given in Figure 2 to illustrate the spread 
in difficulty. The item numbers in Figure 2 correspond to the sequence in the test. 
For example, Item 3 is the third item that the students worked on in the test. As 
additional analyses, differential item functioning (DIF; Holland & Wainer, 1993; 
see Figure A1 and Figure A2 in the Appendix) was tested for gender and grade. 
However, no gender effects (see Reilly et al., 2015) could be found in these items. 
DIF revealed only one item (Item 3) with a relatively high effect of gender, which 
however was still insignificant. DIF analyses for grade resulted in multiple non-lin-
ear significant effects, which, however, were expected based on prior results from 
mathematics education, which also showed non-linear relationships between sec-
ond and third grade (e.g., Benz, 2005).

Figure 2: Item Difficulties of Items for Addition and Subtraction of Numbers up to 100
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The LLTM was estimated stepwise. In a first step, a model (Model 1) was estimat-
ed with DGIC 1 (arithmetic operation). In a second step, another model (Model 
2) was estimated that contained DGIC 2 (necessity of crossing 10) in addition to 
DGIC 1 (arithmetic operation). Finally, DGIC 3 (number of second-term digits) was 
used to estimate a third model (Model 3) that included all three DGICs identified 
in Section 3. Overall, the 35 items included in the analyses contained 17 items that 
showed the characteristic of DGIC 1 (arithmetic operation), 16 of DGIC 2 (necessi-
ty of crossing 10), and 17 of DGIC 3 (number of second-term digits). The stepwise 
estimation with three models was done to (a) illustrate the functionality of LLTMs, 
and (b) evaluate the additional benefit of adding the DGICs to the model. In the 
LLTM, the item parameters are regressed on the DGICs item parameters for each 
item. This contributes to unexplained variance based on the lower degrees of free-
dom (df; Poinstingl, 2009). These item parameters are not random but were fixed 
before the estimation. To determine the item difficulties, a design matrix with the 
weights of the three DGICs had to be established. Although the elements of such 
a design matrix can, in principle, be any positive number, also including fractions 
(Poinstingl, 2009), we assigned dichotomous values (see Table 1). As this paper 
sets out to illustrate the applicability of LLTM for LPMs, only additive components 
were addressed in this study for reasons of simplicity.

6. Results

6.1  Research Question 1: Influence of Identified DGICs on Item 
Difficulty

To determine the influence of the three identified DGICs and thus address Re-
search Question 1, the DGICs are added stepwise. In a first run, DGIC 1 (arithmetic 
operation) is implemented as the only parameter (Model 1). In Model 2 and 3, the 
weight vectors of DGIC 2 (necessity of crossing 10) and DGIC 3 (number of sec-
ond-term digits) are added to the design matrix. The additive procedure of the es-
tablishment of the item difficulties within the concurrent models is exemplified in 
Table 2.

As the Items 5 and 7 do not include the operation of subtraction, their item 
parameters are fixed to 0.00 in Model 1. Generally, items in LLTM that do not 
have a DGIC weight unequal 0 are fixed to difficulty 0.00 as only the presence of  
DGICs can affect an item difficulty. Here, the easiest combination of characteristics 
in terms of content is selected as the baseline so that all additions of characteristics 
that imply difficulty lead to item parameters > 0.
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Table 2: Composition of Item Parameters in LLTM Models 

Item  
number

Item Design matrix 
assignment

Item difficulty

RM Model 1 Model 2 Model 3

5 56 + 3 0,0,0 –0.53
[–0.77, –0.30]

0.00
[0.00, 0.00]

0.00
[0.00, 0.00]

0.00
[0.00, 0.00]

7 43 + 9 0,1,0 0.25
[0.02, 0.47]

0.00
[0.00, 0.00]

0.75
[0.65, 0.85]

0.94
[0.83, 1.05]

8 32 – 15 1,1,1 1.63
[1.40, 1.86]

0.52
[0.42, 0.61]

1.46 
[1.30, 1.62]

2.54 
[2.32, 2.75]

Note. Values in square brackets indicate the 95% confidence interval for each parameter estimation. The 
parameter estimates are given in logits.

As Item 8 is a subtraction item and thus holds characteristic DGIC 1, the item dif-
ficulty is fixed to the global parameter of Model 1, where only this parameter is es-
timated (see Table 3). In Model 3, when all difficulty parameters are introduced, 
the item difficulty of Item 5 is still fixed to 0.00, as its design matrix assignment 
is still 0,0,0. However, the difficulty of Item 8, which combines all three DGICs, 
is estimated to be 2.54, which reflects an additive combination of all three DGICs 
(Baghaei & Kubinger, 2015) given in Table 3, 0.75 + 0.94 + 0.84 ≈ 2.54. All items 
with the same hypothesized DGICs share the same difficulty, as difficulty is only es-
timated based on the DGICs. In comparison, the RM allows a free estimation of 
item difficulty for each item, thus allowing a better prediction of empirical data 
than the LLTM, however leading to less insights on why the items have a certain 
difficulty. The results of the comparison of the concurrent models (Table 3) show 
that the more of the three hypothesized DGICs are implemented in the models, the 
higher the quality of the model with regard to the likelihood, controlled by likeli-
hood ratio tests, and the Akaike Information Criterion (AIC) as well as the Bayesi-
an Information Criterion (BIC).

Table 3 highlights that the introduction of further DGICs causes a more desir-
able likelihood and better information criteria. Model 2 holds a significantly great-
er likelihood than Model 1 (LRModel 1 to Model 2 = 219.19, df = 1, p < .001) and Model 
3 holds a significantly greater likelihood than Model 2 (LRModel 2 to Model 3 = 260.5, 
df = 1, p < .001). The RM still holds the most desirable likelihood  
(LRModel 3 to RM = 882.87, df = 31, p < .001) and information criteria. This is, how-
ever, to be expected as each item’s parameter is introduced as an independent ran-
dom parameter in the model, while the parameters in the LLTMs are treated as 
fixed based on the linear combination of the DGICs. This means that the parame-
ter estimation for the LLTMs is more parsimonious, which can be illustrated with 
an example: In this rather easy exemplary calculation, only 35 items are used, re-
sulting in 34 parameters (i – 1) to be estimated in the RM. In the LLTMs, only 1 to 
3 parameters are calculated (m).
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Table 3: Log-Likelihood of the Models and Respective Difficulty Generating Item 
Characteristics 

Model
CLL Number of 

parameters BIC AIC
Estimate

DGIC 1 (h1) DGIC 2 (h2) DGIC 3 (h3)

1 –4087.79 1 8181.94 8177.58 0.52
[0.42, 0.61]

2 –3978.23 2 7969.19 7960.46 0.71
[0.60, 0.81] 

0.75
[0.65, 0.85] 

3 –3847.98 3 7715.05 7701.96 0.75
[0.65, 0.86]

0.94
[0.83, 1.05]

0.84
[0.74, 0.95]

RM –3406.54 34 7158.68 7023.38 – – –

Note. CLL = conditional log-likelihood; BIC = Bayesian Information Criterion; AIC = Akaike Information 
Criterion; DGIC = difficulty-generating item characteristic. Values in square brackets indicate the 95% 
confidence interval for each parameter estimation. The parameter estimates are given in logits.

Table 3 shows that all item parameters hold significant explanatory power, even 
when controlled for one another (identifiable for Model 3 by the confidence inter-
vals of the DGICs in the square brackets). For DGIC 1 (arithmetic operation), sub-
traction is about three quarters of a logit more difficult than addition in Model 3 
and for DGIC 2 (necessity of crossing 10), the crossing of a 10 is almost a full logit 
more difficult than not crossing a 10. For DGIC 3 (number of second-term digits), 
if there are two digits in the second term, it is about four fifth of a logit more diffi-
cult than if there is only a single digit in the second term.

6.2  Research Question 2: Impact of the Three DGICs 
in Variance Explanation of the RM’s Item Difficulty 
Parameters

To answer Research Question 2 regarding the variance explanation of the three 
identified DGICs, correlations are calculated across the models. The appropriate-
ness of the item parameters themselves can be assessed by the correlations of the 
item parameters between the models, especially when compared to the RM. The 
correlations are given in Table 4.

The item parameters of Model 1 and the item parameters of the RM reach an 
insignificant correlation of r = .11, which, however, is expected, since a model using 
only 1 df (thus allowing only two different values, 0.00 and 0.52, as item difficulty) 
is compared to a model with 34 dfs. Yet, the correlation reaches a highly significant 
value of r = .41 for the item parameters of Model 3 and the RM. This can be inter-
preted as 20% explained variance in the item difficulties due to the introduced pa-
rameters. It underlines that the introduction of only three parameters (a) explains 
20% of the item parameters in the Rasch model with 34 parameters, (b) can be 
deemed successful, and (c) confirms their importance for the general item difficul-
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ty. However, 20% also shows that there is room for more DGICs, interactions, as 
well as other variables to account for unexplained variance, which would be valua-
ble for further item generation.

Table 4: Means, Standard Deviations, and Correlations of the Item Parameters with 
Confidence Intervals

Model M SD Model 1 Model 2 Model 3

Model 1 –0.25 0.26

Model 2 –0.69 0.46 .59**
[.35, .76]

Model 3 –1.17 0.65 .44**
[.15, .66]

.76**
[.60, .87]

RM –0.00 1.08 .11
[–.21, .40]

.23
[–.08, .50]

.41**
[.12, .64]

Note. Values in square brackets indicate the 95% confidence interval for each correlation.
*p < .05. **p < .01.

7. Discussion

In the current study, we developed an item-generating system for basic arithme-
tic operations for numbers up to 100 based on three DGICs. As expected, all three 
DGICs (arithmetic operation, necessity of crossing 10, number of second-term dig-
its) significantly contributed to the prediction of item difficulty parameters in the 
LLTM. In addition, the three DGICs contribute substantially to the variance ex-
planation of the RM’s item difficulty parameters (Research Question 2). Previous 
assumptions about the difficulty characteristics of multi-digit addition and sub-
traction tasks up to 100 were thus confirmed. Gender-specific differences could 
not be identified. While we deliberately chose only three DGICs in the context of 
our research, as this relatively easy model allows easy-to-comprehend feedback for 
teachers, it would be highly valuable from a research perspective to consider addi-
tional DGICs and their interactions in order to achieve a higher variance explana-
tion, thus allowing a better determination of item difficulty. Still, based on differ-
ent solution strategies (e.g., counting strategies; see Hickendorff et al., 2019), the  
DGICs will anyhow only explain a certain share of the variance. Investigating stu-
dents’ currently used strategies has the potential to generate further information 
about the way the items are solved. This information can be used to derive addi-
tional variance explanation on the individual level. According to Wilbert (2014), 
the identification of DGICs is of interest in several aspects:

First, the information on the DGICs can contribute to the validation and fur-
ther development of psychological theories. DGIC analyses can help to refine the 
initial theoretical assumptions about DGICs and can lead to a further development 
of appropriate theoretical models. In this context, findings about the relative diffi-
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culties of DGICs can provide a basis for interpreting the importance of DGICs. Fur-
thermore, more DIF analyses could show whether DGICs apply equally to differ-
ent samples, making it possible to analyze which groups have particular difficulties 
in not only performing tasks generally, but also regarding specific hurdles in terms 
of DGICs. Especially in the field of inclusive education, this could be interesting for 
students with and without special educational needs or between groups of different 
special educational needs.

Second, knowledge about the DGICs is particularly useful for the construction 
of parallel test versions that can be used to monitor learning progress. For LPM, 
which requires frequent measurements over a long period of time, many differ-
ent test items with known and comparable difficulty are needed. For this purpose, 
linear extensions of the RM such as LLTM are useful to identify DGICs, which 
can then be used as templates to generate items of the required difficulty with-
out additional effort. With regard to previous research on LPM instruments in the 
field of computation, Christ et al. (2008) conclude that the use of more system-
atic sampling and item construction would improve the quality of LPM. To date, 
there has been little literature on the investigation on DGICs in the field of basic 
mathematical skills and for developing LPM (e.g., Balt et al., 2020; Ehlert et al., 
2013). However, for the theory-based construction of test items for LPM, it is nec-
essary to obtain valid information about which characteristics influence the difficul-
ty of an item. This will support the development of knowledge about robust indica-
tors. These enable the construction of LPM test procedures that can be used across 
classes and independently of graded curricula. Such curriculum-independent LPM 
tests are then also suitable for use in inclusive education, where often not all of the 
students are taught according to the same curriculum (Gebhardt et al., 2016).

Third, the identification of DGICs is also useful for the fine-grained analysis of 
students’ learning development as it is possible to clearly highlight important as-
pects for further planning of individualized interventions. This allows the provision 
of formative feedback that has a concrete impact on the planning of future teacher 
interventions, rather than giving teachers only mean values that only allow for very 
general pedagogical conclusions. Previous research has shown that many teachers 
struggle with interpreting LPM results (e.g., Espin et al., 2017; Stecker, 2017). By 
identifying a small number of DGICs that serve as a framework for item construc-
tion, it is possible to make it easier for teachers to interpret results and thus estab-
lish a basis for designing appropriate interventions. This type of qualitative feed-
back can provide teachers with concise information about the domains in which a 
student is still struggling. For the domain of multi-digit addition and subtraction 
tasks up to 100 that we addressed in this study, more specific feedback could con-
sist of informing the teacher that students have already confidently mastered addi-
tion tasks with two-digit summands but have not yet mastered crossing 10. With 
computer-based and web-based LPM tools, it is possible to quickly provide such 
qualitative feedback.
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8. Conclusion

As noted at the beginning of this paper, the formulation and verification of a set of 
DGICs based on educational research results using LLTM enables the investigation 
of construct validity and the examination of the influence of the underlying DGICs 
on the difficulty of items. The results are therefore relevant for the establishment 
and further development of psychological theories, for test development, and ed-
ucational practice. The explanation of roughly 20% of the variance in 34 item pa-
rameters by three DGICs alone is a solid result. Yet, of course, this also shows that 
more DGICs are needed to achieve stronger variance explanation of item difficulty. 
So far, we do not control for a certain type of strategy to solve the items but with 
the DGICs, we imply a particular type of strategy (calculating using structures of 
the decimal system). Differential profiles of item difficulties might exist when con-
trolling for strategies.

In the present study, it is not possible to examine additional DGICs due to the 
systematically created item pool. In addition, it has not yet been possible to control 
adequately for a greater range of background characteristics (e.g., dyscalculia) that 
might have a potential influence on item difficulty. One important future question 
is the influence of sequence effects due to the limited processing time of LPM. The 
DGICs robustness against time was only tested in a limited fashion, too. By now, 
a fixed item order was evaluated. In the future, this has to be extended for rand-
omized item orders. In future studies, the processing time of the items or the test 
has to be considered as an item characteristic or function of a difficulty generat-
ing characteristic. Rasch Poisson counts models seem to be a promising alterna-
tive (Baghaei & Doebler, 2019). Such models can also take into account the nest-
ed structure of the data which has not been considered in this study. The nested 
structure may also have an effect on the standard error (SE) of the item parame-
ters which has not been accounted for now. Cognitive diagnostic modeling is an-
other alternative for detailed modeling when deterministic information of the com-
ponent matrices is available (Ravand & Robitzsch, 2015). In addition, the question 
should be investigated, whether the parameters causing difficulties primarily affect 
students in the lower grades and students with special educational needs.

In summary, the study emphasizes the usefulness of the LLTM for the identi-
fication and evaluation of difficulty-generating characteristics for an item-generat-
ing system for basic arithmetic operations. With the identified and verified three  
DGICs, it is possible to easily develop items of varying difficulty for parallel test 
versions, a basic prerequisite for the effective use of LTMs. The three DGICs pro-
vide a basis for computer-based LPM and thus enable an easy to use, practical, and 
easy to interpret application.
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Appendix

Table A1: Design Matrix and Item Descriptives 

Item number DGIC 1 DGIC 2 DGIC 3 Item n M SD
1 1 0 0 78 – 6 = 72 581 0.69 0.46
2 0 0 1 30 + 20 = 50 581 0.88 0.32
3 0 1 0 7 + 4 = 11 581 0.91 0.29
4 1 1 0 93 – 7 = 86 581 0.52 0.50
5 0 0 0 56 + 3 = 59 581 0.70 0.46
6 1 0 0 47 – 7 = 40 581 0.79 0.41
7 0 1 0 43 + 9 = 52 571 0.59 0.49
8 1 1 1 32 – 17 = 15 552 0.36 0.48
9 0 1 0 24 + 6 = 30 529 0.77 0.42
10 0 1 1 47 + 26 = 73 511 0.47 0.50
11 1 0 1 76 – 23 = 53 470 0.54 0.50
12 1 0 1 70 – 30 = 40 428 0.83 0.38
13 0 0 1 42 + 24 = 66 403 0.67 0.47
14 0 1 1 37 + 43 = 80 365 0.70 0.46
15 1 1 0 13 – 6 = 7 341 0.76 0.43
16 1 0 1 83 – 23 = 60 313 0.65 0.48
17 0 1 0 8 + 4 = 12 287 0.83 0.38
18 1 0 0 67 – 4 = 63 274 0.76 0.43
19 0 0 1 40 + 10 = 50 250 0.90 0.31
20 1 1 0 23 – 6 = 17 236 0.70 0.46
21 0 0 0 24 + 5 = 29 208 0.78 0.42
22 1 0 1 48 – 26 = 22 188 0.62 0.49
23 1 0 0 97 – 7 = 90 164 0.84 0.37
24 1 1 1 78 – 49 = 29 155 0.47 0.50
25 0 1 0 78 + 2 = 80 133 0.78 0.41
26 0 1 0 73 + 8 = 81 121 0.73 0.44
27 0 1 1 43 + 38 = 81 112 0.58 0.50
28 1 0 1 80 – 70 = 10 95 0.81 0.39
29 0 0 1 32 + 17 = 49 88 0.56 0.50
30 1 0 1 67 – 47 = 20 77 0.68 0.47
31 0 1 1 49 + 31 = 80 60 0.58 0.50
32 1 1 0 16 – 7 = 9 51 0.73 0.45
33 0 1 0 9 + 8 = 17 47 0.75 0.44
34 0 0 1 70 + 20 = 90 41 0.81 0.40
35 1 0 0 38 – 2 = 36 41 0.85 0.36
36 1 1 0 76 – 8 = 68 38 0.74 0.45
37 1 1 1 48 – 29 = 19 34 0.68 0.48
38 1 0 0 28 – 8 = 20 31 0.84 0.37
39 0 0 0 81 + 7 = 88 29 0.66 0.48
40 0 1 0 47 + 9 = 56 25 0.64 0.49
41 1 0 1 50 – 30 = 20 21 0.95 0.22

Note. DGIC = difficulty-generating item characteristic.
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Table A2: Item Fit Statistics in the RM on Item Level

Item

Unconditional 
outfit

Unconditional 
infit

Conditional 
outfit 

Conditional 
infit 

MSQ MSQ MSQ SE MSQ SE
1 0.80 0.87 0.74 0.09 0.85 0.05
2 0.95 0.90 0.81 0.19 0.95 0.09
3 1.29 1.08 0.88 0.22 0.98 0.11
4 1.04 1.03 0.89 0.06 0.93 0.04
5 1.12 1.13 0.92 0.09 1.00 0.05
6 0.80 0.89 0.69 0.12 0.85 0.06
7 0.98 1.03 0.91 0.06 0.93 0.04
8 0.83 0.91 0.79 0.07 0.86 0.04
9 0.89 1.02 0.80 0.11 0.91 0.05
10 0.91 0.93 0.89 0.06 0.91 0.04
11 1.06 1.08 0.84 0.06 0.89 0.04
12 1.12 1.04 0.85 0.12 0.90 0.06
13 0.83 0.91 0.76 0.07 0.82 0.04
14 0.61 0.74 0.59 0.07 0.68 0.04
15 0.93 1.00 0.76 0.09 0.88 0.05
16 0.95 0.92 0.71 0.06 0.77 0.04
17 0.94 1.17 0.85 0.13 0.98 0.06
18 0.94 0.85 0.751 0.07 0.81 0.04
19 1.15 1.17 0.71 0.16 0.89 0.07
20 0.78 0.86 0.81 0.07 0.88 0.04
21 0.85 1.05 0.79 0.08 0.89 0.04
22 1.09 1.01 0.92 0.06 0.91 0.04
23 0.87 0.79 0.71 0.11 0.86 0.05
24 0.81 0.93 0.91 0.06 0.95 0.04
25 1.21 1.16 0.85 0.07 0.91 0.04
26 1.13 0.92 0.90 0.09 0.91 0.05
27 0.87 0.91 0.80 0.06 0.87 0.04
28 0.82 0.97 0.97 0.10 1.01 0.91
29 0.74 0.90 1.07 0.06 1.11 0.00
30 0.89 0.84 0.93 0.06 0.96 0.34
31 1.35 1.10 1.20 0.06 1.18 0.04
32 1.84 1.20 0.93 0.07 0.95 0.17
33 1.19 1.18 1.38 0.08 1.32 0.04
34 2.04 1.07 1.47 0.08 1.34 0.04
35 0.66 0.94 0.80 0.07 0.90 0.04
36 0.43 0.71 1.26 0.06 1.15 0.04
37 0.88 1.13 1.39 0.08 1.28 0.04
38 4.71 1.34 2.08 0.06 1.60 0.04
39 0.96 0.90 2.17 0.06 1.66 0.04
40 1.47 1.08 1.56 0.06 1.45 0.04
41 0.05 0.27

Note. MSQ = mean square residual; the unconditional fit statistics based upon the estimation of the item 
and person parameters; conditional fit statistics only rely on the item parameters (e.g., Müller, 2020). 
To estimate the conditional item fit statistics data without missingness is necessary. Therefore, single 
imputation was done with R package mice (Van Buuren & Groothuis-Oudshoorn, 2011).
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Figure A1: Plot of the Confidence Intervals for the Item Parameters with Split Criterion 
Gender

Note. The solid line indicates the group of girls.

Figure A2: Plot of the Confidence Intervals for the Item Parameters with Split Criterion 
Grade

Note. The solid line indicates the group of second graders.




