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Abstract
Accurate response times are essential for assembling tests in educational large-
scale assessment to ensure test validity and effi  cient testing. Because obtain-
ing empirical response times in pilot studies is cost-intensive and also because 
this process is complicated in paper-and-pencil assessments, we propose a mod-
el-based approach for calculating response times from readily available testlet 
properties. This prediction formula was developed using the response time data 
of 334 high school students who worked on 93 testlets of a paper-and-pencil test 
measuring science achievement. A large proportion (94.3 %) of the variance in re-
sponse times (i.e., the variation of the average response times of persons across 
testlets) was explained by number of items, number of words, and response type. 
Another sample of 1,386 students who worked on 125 additional science testlets 
was used to validate the initial fi ndings. Overall, the proposed easy-to-use for-
mula is suitable for providing accurate response times for test assembly at a low 
cost. 1
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Ein Modell zur Schätzung von 
Aufgabenbearbeitungszeiten zur Optimierung von 
Papier-und-Bleistift-Large-Scale-Assessments

Zusammenfassung
Akkurate Aufgabenbearbeitungszeiten stellen einen essentiellen Bestandteil 
der Testkonstruktion im Large-Scale-Assessment zur Gewährleistung der Test-
validität und Erhöhung der Effi  zienz der Testung dar. Da die Erhebung von 
Auf   gabenbearbeitungszeiten in Papier-und-Bleistift-Tests kostenintensiv und 
kom   pliziert ist, wird ein modellbasierter Ansatz zur Berechnung der Aufgaben-
bearbeitungszeiten mittels leicht verfügbarer Aufgabeneigenschaften vorge-
schlagen. Diese Vorhersageformel wurde mit Bearbeitungszeitdaten von 334 
Schülern, die 93 Aufgaben eines Papier-und-Bleistift-Tests zur Messung von 
natur    wissenschaftlicher Kompetenz bearbeiteten, entwickelt. Ein  hoher Anteil 
(94.3 %) der Varianz der Aufgabenbearbeitungszeiten (d.  h., der Variation der 
mittleren Bearbeitungszeiten von Personen über Aufgaben) wurde durch die 
Anzahl an Items, Anzahl an Wörtern und dem Aufgabenformat erklärt. Eine 
zweite Stichprobe von 1386 Schülern bearbeiteten 125 zusätzliche Natur wissen  -
schaftsaufgaben, um die Ergebnisse zu validieren. Insgesamt erwies sich die 
vorgeschlagene, leicht zu verwendende Formel als geeignet, um akkurate Be-
arbeitungszeiten zur Testkonstruktion zu geringen Kosten zu liefern.

Schlagwörter
Bearbeitungszeit; Testkonstruktion; Large-Scale-Assessment

1.  Introduction

1.1  Theoretical background

Multiple matrix sampling designs are the most commonly applied designs in edu-
cational large-scale assessments (Rutkowski, Gonzales, von Davier, & Zhou, 2014). 
The central idea of such designs is to construct several test forms – called book-
lets in paper-and-pencil tests – that are assembled from a large pool of testlets, 
which consist of a stimulus and one or several items. A major advantage of this 
approach is that each individual’s workload can be held within acceptable limits 
while simultaneously covering a variety of diff erent content domains across the 
test. One essential objective that needs to be fulfi lled when compiling booklets is to 
ensure that the booklet can be reasonably completed within the pre-specifi ed test-
ing time. Therefore, it is pivotal to know the testlet response times that is defi ned 
as the average time persons need to complete a testlet. Testlet response time can 
be obtained in several ways. The most precise testlet response times would obvi-
ously be gained from direct measurement in a pilot study. However, this approach 
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is usually laborious, time-consuming, and costly. Instead, testlet response times 
are often gauged by didactic experts in the process of testlet construction and de-
velopment. However, the accuracy of and the consistency between experts’ ratings 
might be – and often is – rather low. A promising alternative is to estimate re-
sponse times from data that can be accessed without testing, for example, the num-
ber of words in a specifi c testlet. Although extensive amounts of research have ad-
dressed a variety of issues concerning response times in educational measurement 
in recent decades (for comprehensive literature reviews, see Lee & Chen, 2011; 
Schnipke & Scrams, 2002), surprisingly few studies have broached the idea of ob-
taining response time estimates from testlet (or item) properties.  Halkitis, Jones, 
and Pradhan (1996) studied the degree to which item response time was related to 
item diffi  culty, item discrimination, and word count on a licensing examination. All 
of the predictors together accounted for half of the variance in the logs of item re-
sponse time with word count as the strongest predictor (R² = 27.2 %), followed by 
item diffi  culty (R² = 16.2 %), and item discrimination (R² = 6.8 %). In the same 
vein, Bergstrom, Gershon, and Lunz (1994) identifi ed item text length, (relative) 
item diffi  culty, item sequence, and position of the correct answer (in multiple-
choice items) as relevant predictors. Furthermore, the presence of a fi gure had a 
strong impact on response times, although this might have been due to the admin-
istration of a separate illustration booklet. In data from a medical licensing exam-
ination, approximately 45 % of the variance in item response time was explained 
by diffi  culty, the presence/absence of pictures, and the number of words (Swanson, 
Case, Ripkey, Clauser, & Holtman, 2001). The authors reported that “a logit change 
in item diffi  culty adds 14+ seconds”, “the presence of a picture adds 12+ seconds,” 
and “each word adds approximately 0.5 seconds” (p. 116). Even though empirical 
studies on this topic are rare, the results indicate that predicting response times 
from item properties is a worthwhile endeavor. 

Test construction is not an end in and of itself but is always conducted with the 
goal of testing a specifi c population of students. Here, response times can provide 
valuable information about how to design the test as tests may function diff erent-
ly in diff erent subpopulations. Consequently, this information is useful for tailoring 
tests to fi t the needs of subpopulations with diff erent time requirements. Research 
on the relations between person properties and response times is much more elab-
orate than research on item properties (again, see Lee & Chen, 2011; Schnipke & 
Scrams, 2002). However, the question of how student characteristics infl uence re-
sponse times is typically addressed from a diff erent angle with research that treats 
response time estimates as an auxiliary source of information for estimating indi-
vidual ability (e.g., Wang & Hanson, 2005). Conversely, a person’s ability is par-
ticularly important when studying response times. In a pioneering article on the es-
timation of response times (Thissen, 1983), the ability-latency relation was strongly 
moderated by the test content. Correlations between eff ective ability and slowness 
ranged from zero for a spatial visualization test to .94 for a fi gural reasoning task. 
Analyses with contemporary statistical models (e.g., Klein Entink, Fox, & van der 
Linden, 2009) confi rmed the complexity of this connection: Some studies found a 
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negative relation between ability and speed, indicating that more capable test-tak-
ers spent more time on a task (Goldhammer & Klein Entink, 2011), whereas others 
reported the opposite result (Davison, Semmes, Huang, & Close, 2011). Besides the 
speededness of the measure, the relation has been further moderated by the antic-
ipated consequences (low- vs. high-stakes testing) and personality traits such as 
conscientiousness or impulsivity (also see research on the speed-accuracy trade-
off , e.g., Goldhammer, 2015 for an overview). Furthermore, persons diff er in men-
tal speed of information processing – this individual baseline speed is an impor-
tant factor when investigating response times and should be taken into account to 
avoid bias (Mayerl, 2005). In summary, the relations between response times and 
student properties are not clear. 

The popularity of research on response times has soared with the advent of the 
technology to measure them directly in computer-based assessments. Obviously, 
measuring response times in paper-and-pencil settings is far more complicated, 
and this is presumably the reason that almost all studies rely on computer-based 
data. However, data from computer-based tests may not be suitable for assem-
bling paper-and-pencil tests because transposing the content from computer to pa-
per may aff ect the reliability and validity of the measure. Although meta-analyses 
on the comparability of paper-based and computer-based assessments have report-
ed only small to negligible cross-mode diff erences (e.g., Mead & Drasgow, 1993; 
Wang, Jiao, Young, Brooks, & Olson, 2007, 2008), three caveats must still be con-
sidered when interpreting such fi ndings. First, this comparability holds only for un-
speeded measures as Mead and Drasgow (1993) conclusively demonstrated that the 
almost perfect cross-mode correlation for timed power tests dropped considerably 
to .72 for speeded tests. Second, meta-analyses usually consider the mean struc-
ture but not the variance-covariance structure. Even if there are no mode eff ects 
for means, there might be mode eff ects concerning the variances and covariances 
(Schroeders & Wilhelm, 2011). Third, whereas cross-media diff erences are small 
in general, in a specifi c instantiation, substantial diff erences between test media 
may occur (van Lent, 2008), and without generalizable knowledge about which fac-
tors aff ect the equivalence, it is diffi  cult to determine the impact that a transition 
will have on response times. Factors aff ecting response times across media might 
consist of diff erences in the perceptual demands or the motor-skill requirement in 
the response procedure (Schroeders & Wilhelm, 2010). More precisely, diff erenc-
es across administration modes can result from scrolling down long texts on small 
screens with low screen resolution (Bridgeman, Lennon, & Jackenthal, 2003), 
clicking response buttons with a mouse instead of ticking the solution on a sheet of 
paper with a pen (Pomplun, Frey, & Becker, 2002), and using a keyboard instead 
of answering manually (Overton, Taylor, Zickar, & Harms, 1996). In summary, the 
change from paper to computer may alter the construct that the test administrator 
intends to measure. With this concern in mind, we decided not to assess response 
times on computers but to employ a paper-and-pencil assessment instead.
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1.2  The scope of the present research

The aim of the present study was to provide a well-founded and easy-to-use for-
mula to calculate response times for testlets, stimuli, and items in order to opti-
mize the assembly of paper-and-pencil tests in educational large-scale assess-
ments. Furthermore, we explored whether response times depended on certain 
person properties in order to determine how to tailor test construction to the spe-
cifi c needs of specifi c subgroups of students. More precisely, we modeled response 
times as dependent on the testlet properties (a) number of items, (b) number of 
words, (c) response type (multiple choice, short response, extended response), and 
(d) testlet diffi  culty. We simultaneously regressed them on the following student 
properties as well: (a) sex, (b) school track, and (c) competence. Furthermore, two-
way interactions of student and testlet properties were investigated exploratively. 
In a second step, we validated this empirically obtained model in a new sample of 
testlets and students.

2.  Method

2.1  Participants

Study 1 was used to develop the prediction formula. The sample consisted of 334 
students in Grade 9 (49.4 % girls, 2.1 % did not indicate their sex) with an average 
age of 15.5 years (SD = 0.75) from four academic-track schools (56.9 %) and three 
intermediate-track schools (43.1 %). Academic-track schools prepare students for 
university enrollment, whereas students in intermediate-track schools often pursue 
a vocational education. Participation was voluntary, and students were not reward-
ed or graded in any way. Data were collected in the spring of 2010.

Study 2 was conducted for validation purposes. The data collection took place 
in the fall of 2010. All 1,386 students were 10th graders from intermediate-track 
schools, and almost half of them were girls (48.0 %, 1.9 % did not indicate their 
sex).

2.2  Design and procedure

In Study 1, we distributed 93 testlets, each of which contained a stimulus and 
one to fi ve (M = 1.86) items. They originated from a large pool of testlets that 
were designed to measure the German Science Education Standards (for details 
on the development and evaluation of these standards, see Kremer et al., 2012; 
Neumann, Fischer, & Kauertz, 2010; Pant et al., 2013). The conceptual core of ed-
ucational standards is very similar to the idea of scientifi c literacy (e.g., Holbrook 
& Rannikmae, 2009) and contains four subdomains: content knowledge, scientif-
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ic inquiry, decision making, and communication. Because the test development for 
these subdomains was time-delayed, only testlets measuring content knowledge 
and scientifi c inquiry were available in Study 1. The required response types con-
sisted of either choosing an answer (multiple choice), writing one or several words 
(short response), or writing several sentences (extended response). Figure 1 dis-
plays an example testlet from the subdomain scientifi c inquiry consisting of a stim-
ulus and a multiple-choice item. We employed an incomplete block design (e.g., 
Frey, Hartig, & Rupp, 2009) with 24 booklets that were randomly administered to 
the students. The test construction process began by grouping testlets into clusters 
of 20 min. Eight clusters were assembled for each science subject (biology, chemis-
try, physics). In the next step, each of these clusters was assigned to two booklets. 
Following this procedure, each booklet contained three clusters, one for each sci-
ence domain. Because the unspeeded response time was the variable of interest, all 
students were provided with suffi  cient time to complete the test. Before and after 
working on each testlet, students were asked to record the time in the test booklet. 
In order to standardize the time recording, a clock was positioned in front of the 
class. Leaving the time recording to students worked surprisingly well. Only a very 
few data points had to be removed due to unreadability or implausibility.

Figure 1: Example of a science testlet consisting of a stimulus and a multiple-choice item

cardboard box 
to darken 

pond water, 
temperature 25°C 

lamp 

Water fleas  

Some fish feed on water fleas. 
These small crustaceans can be found in different areas of a pond. 

S
tim

ulus 

Christopher has observed water fleas in a pond many times. He has found that 
water fleas often stay in bright, warm spots and that they are often in shallow 
water near aquatic plants. 
To scientifically validate his observations, Christopher conducts the following 
experiment: 
He fills a shallow dish with 
warm (25°C) pond water. He 
covers half the dish with a dark 
cardboard box and places a 
bright lamp above it. He places 
ten water fleas in the pond 
water and observes their 
behavior. 
Which question does Christopher address with his experiment? 
 
Tick the correct answer. 
 

 Do water fleas prefer light or dark spots? 
 Do water fleas prefer staying close to water plants? 
 Do you usually find water fleas in shallow water? 
 Do water fleas prefer warm or cold water? 

M
ultiple-choice item
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In Study 2, the design and procedure were similar to Study 1, except for three 
changes: (a) the topic of the testlets consisted of another scientifi c competence: de-
cision making, (b) booklets contained two clusters of 20 min length equaling 40 
min of total testing time, and (c) booklets contained either one cluster of chemistry 
and one cluster of physics or two clusters of biology. A total of 51 booklets were as-
sembled and randomly administered to the students.

2.3  Statistical analyses

Response times are on the Person × Testlet level. As a consequence of the em-
ployed multiple matrix sampling design each person responded to several, but not 
all testlets. Thus, persons and items are partially crossed (see, for instance, Hecht, 
Weirich, Siegle, & Frey, 2015a). A suitable data analysis technique for crossed data 
structures is linear mixed models1 (LMM). We specifi ed fi ve consecutive LMMs 
to predict the response time using the characteristics of testlets and students. 
Response times were recorded in seconds – yjt was the time student j worked 
on testlet t. Because booklets were distributed to students randomly missingness 
due to the multiple matrix design was completely at random (MCAR). LMM soft-
ware such as the R (R Core Team, 2014) package lme4 (Bates, Mächler, Bolker, & 
Walker, 2014) is able to handle MCAR adequately. 

The fi rst model in the series contained only an intercept α0, a student param-
eter, θj, a testlet parameter, βt, and a Student × Testlet interaction parameter, εjt:

(1)

In this model, the intercept α0 is the overall mean testlet response time, θj is the 
deviation of student j from this mean, and βt is the deviation of testlet t. The term 
εjt is the interaction of a specifi c student j with a specifi c testlet t. As the purpose 
of the present study was to investigate the eff ects of testlet and person properties 
on the response time, the point estimates for students and testlets were of less in-
terest. Thus, students, testlets, and interactions were each modeled as random 
eff ects, assuming a normal distribution with means of zero and variances of     ,
     , and      . These variances indicated the extent to which the students and testlets 
diverged from the overall mean on average. Taking this individual baseline speed 
into account is pivotal for unbiased analyses (Mayerl, 2005). Further, testlet and 
student properties in subsequent models were expected to explain this variability 
in response time.

In the second model, the number of items (Nt,items) and the total number of 
words (Nt,words) in a testlet t were added to the model as predictors (fi xed eff ects):

1 Linear mixed models (e.g., McCulloch, Searle, & Neuhaus, 2008) are related to multilevel 
(or hierarchical) models (e.g., Raudenbush & Bryk, 2002). Multilevel models are special 
linear mixed models and thus can be described within the linear mixed model frame-
work. 

ε
2σβ

2σ
θ
2σ
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(2)

where the intercept α0 is the mean response time of the (hypothetical) testlets with 
zero items and zero words. The variance of testlets,         , is conditional on the ef-
fects of testlet properties and could be interpreted as the remaining unexplained 
variance. The main purpose of Model 2 was to estimate the additional time that a 
single item added to the response time needed to complete a testlet. The estimate 
of this eff ect, γitems, was used as a fi xated eff ect in the following models to facili-
tate interpretation and to avoid estimation problems due to matrix rank defi ciency. 
Note that the term fi xated and the asterisk sign * is used for fi xed eff ects that are 
fi xed to a specifi c value. Hence, γ*items in the next models is the estimated value of 
γitems from Model 2.

Model 3 additionally included the numbers of multiple-choice items (Nt,MC), 
short response items (Nt,SR), and extended response items (Nt,ER) and the centered 
diffi  culty of the testlet (Xt,diff ) as predictors:

(3)

Whereas the eff ect of number of items indicates how much response time is needed 
for an item in general, the response type eff ects express the additional time needed 
for items of a particular response type. The testlet diffi  culty (i.e., the average of the 
threshold parameters), Xt,diff , was estimated using a partial credit model with the 
software package ConQuest 2.0 (Wu, Adams, Wilson, & Haldane, 2007) and cen-
tered afterwards. Thus, if the diffi  culty changed by one logit, the response time in-
creased by a value of γdiff . 

In Model 4, student properties were added to explain the variability in students’ 
response times. The predictors were sex (Zsex), school track (Ztrack), and students’ 
competence (Zcomp). We used the Greek letter δ instead of γ to distinguish between 
the eff ects of student properties and testlet properties:

(4)

The variability in students was modeled as conditional on the eff ects of student 
properties and represented the unexplained variability in students’ response times. 
Students’ competence estimates (centered WLEs, i.e., weighted likelihood esti-
mates; Warm, 1989) came from the same item response model as the testlet diffi  -
culties. The dichotomous variables sex (boys vs. girls) and school track (intermedi-
ate vs. academic) were eff ect coded. Instead of using the default eff ect codes (i.e., 
-1 and 1), we modifi ed them according to the proportions of the respective groups 
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in our sample (this is essentially equivalent to centering the eff ect codes). For the 
variable school track, the centered eff ect codes were Ztrack1 = -1.14 for the interme-
diate track and Ztrack2 = 0.86 for the academic track. Because the sample contained 
almost equal proportions of boys and girls, the centered eff ect codes for the var-
iable sex were Zsex1 = -1.01 for boys and Zsex2 = 0.99 for girls. The advantage of 
centered eff ect codes is that the eff ect is estimated for equal proportions of the 
two groups (50 %) even though the distributions in the sample may be diff erent. 
As a consequence, the intercept does not change when such centered eff ect cod-
ed variables are entered into the model. Furthermore, we included all signifi cant 
Student × Testlet interactions in the model by fi rst including all interactions and 
then dropping insignifi cant ones. For the sake of clarity, Equation 4 does not con-
tain the interaction terms and in Table 3, results are only reported for interactions 
that have been found signifi cant.

For the fi nal model, Model 5, all nonsubstantial eff ects from Model 4 were ex-
cluded to derive a prediction formula that could be easily implemented to calculate 
the response times for testlets and items on paper-and-pencil tests in large-scale 
assessments.

All models were estimated with the function lmer from the lme4 package (Bates 
et al., 2014). Confi dence intervals were bootstrapped using the lme4 function 
bootMer with 10,000 simulations and the function boot.ci from the package boot 
(Canty & Ripley, 2014). An estimate is considered signifi cantly diff erent from zero 
if zero is outside the 95 % confi dence interval. The main reason for using the boot-
strapped and therefore potentially asymmetric confi dence intervals is that lme4 
does not provide standard errors for variance estimates because “in most cases 
summarizing the precision of a variance component estimate by giving an approxi-
mate standard error is woefully inadequate” (Bates, 2010, p. 19).

The log of the response times is often reported as log-normally distributed and 
analyzed accordingly. For the data at hand, the log of the response times did not 
better approximate a normal distribution. Thus, the original response time esti-
mates were used. 

3.  Results

3.1  Descriptive statistics

Table 1 shows the descriptive statistics for the empirical testlet response time 
and testlet properties in Study 1 (for prediction) and Study 2 (for validation). The 
main diff erence between the testlets used in these two studies was their length. 
The Study 2 testlets, which measured decision-making competence in science, 
contained more items (M1 = 1.86 vs. M2 = 2.92) and nearly twice as many words 
(M1 = 175.14 vs. M2 = 322.82) than the Study 1 testlets, which measured content 
knowledge and scientifi c inquiry skills. These diff erences in testlet length were 
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refl ected in a much higher average response time in Study 2 (M1 = 148.20 s vs. 
M2 = 277.66 s). The correlations between the empirical testlet times and testlet 
properties are shown in Table 2. Not surprisingly, the number of items was high-
ly correlated with response time (r1 = .87, r2 = .70). The correlations between the 
number of words and response time were also large (r1 = .75, r2 = .64). Further, 
the number of items and the number of words were also substantially correlated 
(r1 = .68, r2 = .65). The correlations between the response type variables and the 
number of words ranged from .32 to .50 in Study 1.

Table 1:  D escriptive statistics for testlet response time and testlet properties in Studies 1 
and 2

Testlet characteristic Study 1 (N = 93)  Study 2 (N = 125)

M SD Min. Max. M SD Min. Max.

Testlet response time 148.20 66.68 57.07 320.00 277.66 91.03 81.43 621.00

Number of items 1.86 1.04 1 5 2.92 1.32 1 7

Number of words 175.14 82.43 27 450 322.82 123.39 106 733

Multiple-choice items 1.12 0.88 0 4 1.03 1.05 0 5

Short response items 0.47 0.75 0 3 0.78 0.91 0 4

Extended response items 0.27 0.53 0 2 0.98 1.18 0 5

Testlet diffi  culty -0.14 1.01 -3.09 4.85 0.47 1.34 -2.33 4.21

Notes. Testlet response time is presented in s. Testlet diffi  culty is presented in logits.

Because of the high intercorrelations between the number of items and the oth-
er variables, the eff ect was fi rst estimated in Model 2 and then fi xated in all sub-
sequent models. This approach allowed us to disentangle the impact of number of 
items and the other variables on response time despite the high correlations. To 
provide a better understanding of the relations between variables, partial correla-
tions (i.e., correlations controlled for the number of items) are reported in the up-
per triangle of Table 2 (calculated with the R package parcor; Krämer & Schäfer, 
2014). For example, as the number of multiple-choice items increased – relative to 
items with other response types – the testlet response time decreased in both stud-
ies (r1 = -.43, r2 = -.58). By contrast, as the number of extended response items in-
creased, the testlet response time was higher (r1 = .27, r2 = .48). The relation be-
tween testlet diffi  culty and response type was as follows: Testlets that contained 
more multiple-choice items were easier (r1 = -.24, r2 = -.41), whereas those that 
contained more extended response items were associated with greater testlet diffi  -
culty (r1 = .35, r2 = .45).
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 Table 2:  Correlations of testlet response time and testlet properties in Studies 1 and 2

Testlet characteristic Study Testlet characteristic

  1 2 3 4 5 6 7

Testlet response time (1) 1 .42 -.43  .23 .27  .27

2 .33 -.58  .00 .48  .47

Number of items (2) 1  .87

2  .70

Number of words (3) 1  .75  .68  .38 -.26 -.20  .00

2  .64  .65  .14  .00 -.13  .09

Multiple-choice items (4) 1  .32  .56 .62 -.74 -.45 -.24

2 -.13  .36 .34 -.19 -.63 -.41

Short response items (5) 1  .50  .45 .13 -.30 -.23  .00

2  .23  .30 .20 -.06 -.60 -.11

Extended response items (6) 1  .48  .38 .13 -.14 -.02  .35

2  .62  .41 .17 -.39 -.40  .45

Testlet diffi  culty (7) 1  .11 -.05 .02 -.24 -.01 .32

2  .36  .04 .13 -.38 -.10 .43

Notes. Correlations are displayed in the lower triangle. Partial correlations with the number of items par-
tialed out are displayed in the upper triangle.

3.2  Models

Table 3 displays the results of all fi ve consecutive models. In Model 1, the inter-
cept representing the overall average testlet response time was α0 = 149.4 s. The 
deviations of testlets (   = 65.1, 95 % CI [55.4, 75.4]) and students (    = 27.4, 
95 % CI [24.0, 30.9]) were signifi cantly diff erent from zero – thus, there was in-
deed a substantially large amount of variability that could be explained by the 
properties of testlets and students in further models. The purpose of Model 2 was 
to estimate the eff ect of the number of items so that the parameter could be includ-
ed as a fi xated eff ect in subsequent analyses. This eff ect amounted to γitems = 43.8 s, 
which means that adding one item to the testlet increased the response time by 
43.8 s on average. The two testlet properties in Model 2, number of items and 
number of words, explained 83.4 % of the variability in testlet response time. 
Further, Model 2 possessed a smaller Bayesian information criterion (BIC) and 
Akaike information criterion (AIC) than Model 1 (see Table 3), indicating that this 
model was more suitable for explaining the data at hand. In Model 3, the number 
of items of any response type (i.e., multiple choice, short response, or extended re-
sponse) and the centered testlet diffi  culty were added as predictors. The eff ect of 
the multiple-choice response type was estimated as γMC = -24.4 s, that is, students 
were able to answer multiple-choice items faster than the overall average. In other 
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words, adding one multiple-choice item increased the response time by γitems + γMC 
= 43.8 - 24.4 = 19.4 s. The eff ects for short response and extended response items 
were γSR = 2.8 and γER = 14.5, respectively. Comparing a multiple-choice item to an 
extended response item (with an equal number of words and diffi  culty) yielded a 
diff erence of 14.5 - (-24.4) = 38.9 s because writing a paragraph takes much longer 
than just ticking boxes. Surprisingly, the diffi  culty of the task played no role as in-
dicated by the near-zero and nonsignifi cant eff ect γdiff  = 1.1, 95 % CI [-3.3, 5.4]. The 
intercept was also near zero (α0 = 2.6, 95 % CI [-11.4, 16.2]) because a hypothetical 
testlet with zero words and zero items would take no time to complete. Further, a 
(hypothetical) testlet with just a single stimulus but no items had a response time 
that depended on only the words of the stimulus that needed to be read. For every 
word in the testlet, the response time increased by γwords = 0.37 s. Thus, increasing 
the text length by 100 words would add 37 s to the predicted response time.

Besides the testlet prope rties, Model 4 additionally included student proper-
ties. All student properties that were considered in our study – sex, school track, 
and students’ competence – exhibited only very marginal nonsignifi cant eff ects 
(δsex = 0.91, 95 % CI [-3.0, 4.7], δtrack = 1.6, 95 % CI [-2.5, 5.8], and δcomp = 0.18, 
95 % CI [-4.4, 4.7]). Therefore, it did not seem necessary to adjust the response 
times for booklets that were specifi cally designed for these subsamples (boys vs. 
girls, intermediate vs. academic track, more vs. less competent students). However, 
two interactions between testlet and person properties were relevant and therefore 
included in Model 4, that is, Sex × Extended Response (6.1, 95 % CI [1.6, 10.6]) 
and School Track × Extended Response (16.6, 95 % CI [12.2, 21.1]). Thus, girls 
worked 2 * 6.1 = 12.2 s longer on extended response items than boys and students 
who were enrolled in an academic-track school worked 2 * 16.6 = 33.2 s longer on 
an item with an extended response format than students enrolled in an intermedi-
ate-track school. These diff erences should be taken into account when tests contain 
a suffi  cient number of extended response items and need to be tailored to these 
subgroups.

For Model 5, all of the nonsubstantial predictors from Model 4 were excluded 
to derive a formula that would be easy to use to calculate response time estimates. 
Although the eff ect of short responses was nonsignifi cant, it was retained in the 
prediction model in order to facilitate confusion-free handling. This fi nal and best 
fi tting model (lowest AIC and BIC) explained 94.3 % of the variability in testlets:

(5)

3.3  Examples

We will now present examples that show how to use this formula, which can 
be applied to calculate response times for (a) stimuli, (b) items, and (c) test-
lets. In the simplest case of a stimulus, all predictors are set to zero except for 
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the number of words. The response time for a stimulus with Nt,words = 100 is then 
y(a) = 0.39 * 100 = 39 s. An extended response item with Nt,words = 100 will take 
y(b) = 43.8 * 1 + 0.39 * 100 + 14.7 * 1 = 97.5 s to complete. If this item will be 
employed in academic-track schools, 14.3 s should be added: y(b)2 = y(b) + 16.6 * 
Ztrack2 * Nt,ER = 97.5 + 16.6 * 0.86 * 1 = 111.8 s. For intermediate-track schools, 
18.9 s should be subtracted: y(b)1 = y(b) + 16.6 * Ztrack1 * Nt,ER = 97.5 + 16.6 * (-1.14) 
* 1 = 78.6 s. For a testlet, two approaches are feasible: either applying the formu-
la to the entire testlet or summing the response times of the elements. We com-
bined the previously used stimulus and two of the previously used extended re-
sponse items into a testlet. When applying the formula, this yielded: y(c)1 = 43.8 * 
2 + 0.39 * (100 + 100 + 100) + 14.7 * 2 = 234 s. Alternatively, the separately calcu-
lated response times can be summed across the three elements: y(c)2 = y(a) + 2 * y(b) 
= 39 + 2 * 97.5 = 234 s. An asset of this formula is that it allows various testlets to 
be assembled from items with pre-calculated response time without the need to ap-
ply the formula to the testlet.

3.4  Validation

To validate the empirically derived prediction formula, another sample of persons 
completing another sample of N = 125 testlets were drawn and testlet response 
times recorded. Thus, empirical testlet response times can be compared to predict-
ed testlet response times that were calculated by plugging testlet properties into 
Equation 5. For each of the 125 testlets the diff erence between the predicted and 
empirical response time (prediction bias) was calculated. The mean prediction bias 
(across testlets) was Mbias = -34.52 (SDbias = 49.88). Thus, response times are un-
derestimated by Mbias / Mempirical = -34.52 / 277.66 = -12.4 %. The root mean square 
prediction error, which takes both the bias and the variation of predicted values 
into account, is RMSPE = 60.50.

4.  Discussion

Accurate response times of testlets and items are crucial for assembling the book-
lets of a paper-and-pencil test that will be used in large-scale assessments. The 
most accurate response times can certainly be obtained by pilot testing the testlets 
and items, but this process is time-consuming and expensive. Nevertheless, even 
for pilot testing, it is necessary to have some initial response time estimates for 
testlets. Obtaining response time estimates from available testlet and item proper-
ties is a quick, convenient, and low-cost alternative to extensive pilot testing or ex-
pert ratings. To derive an empirically based formula, we collected response times 
from a sample of high school students who worked on science testlets. On the ba-
sis of these empirical data, we acquired a sound prediction model (Model 5) that 
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can be used to estimate response times for stimuli, items, and testlets from (a) the 
number of items, (b) the number of words, and (c) the response type. These are all 
easy-to-obtain properties that are available without cost-intensive pilot testing. 

Our results are plausible and in line with previous research. Number of words 
was also identifi ed as a relevant predictor in the studies by Halkitis et al. (1996), 
Bergstrom et al. (1994), and Swanson et al. (2001). In our data, it took 0.39 s to 
process one word, a value that is close to Swanson’s estimate of (approximately) 
0.5 s. In our assessment of student properties, we found no main eff ects of sex 
or school track. These fi ndings are consistent with Bergstrom et al.’s (1994) fi nd-
ings which suggested that “examinee characteristics are generally not related to re-
sponse time” (p. 13). However, in light of the person variation of       = 27.4 in our 
model, the statement that person characteristics are generally not related to re-
sponse times is rather questionable. In our data, there are diff erences between per-
sons, and they would probably be explainable if one only had the “right” predic-
tors. Nonetheless, for test designers, the null eff ect of sex and school track is a 
satisfactory outcome because there is no need to construct separate test forms, for 
example, for academic-track and intermediate-track schools. A somewhat puzzling 
result in our study was the null eff ect of testlet diffi  culty, whereas in other studies 
this was a weak to moderately strong predictor. There might be several reasons for 
this. First, diffi  culty and response time were assessed on the level of testlets (in-
stead items). Thus, there might be more expectable eff ects on the item level that 
cancel themselves out when aggregated to testlets. Second, there might be individ-
ually varying eff ects of testlet diffi  culty that sum to zero on average. For example, 
more competent students might be faster in answering diffi  cult items. However, if 
less competent students tend to quickly skip a testlet they are then again as fast as 
(or even faster than) more competent students. Such a phenomenon might also ex-
plain the null eff ect of the Testlet Diffi  culty × Student’s Competence interaction 
in our study. Of course, there might be more person characteristics that moder-
ate the diffi  culty eff ect. Future research should explore Testlet/Item × Person in-
teractions more thoroughly. Further, the null eff ect of testlet diffi  culty in this study 
does not imply that testlet diffi  culty is a negligible variable when assembling large-
scale tests. Although students will approximately need the same time independent 
of testlet diffi  culty, compiling too diffi  cult or too easy booklets might result in prob-
lematic booklet eff ects (Hecht, Weirich, Siegle, & Frey, 2015b). 

The statistical method (linear mixed models) that we employed allowed us to 
estimate Item × Student interactions. We investigated these in an exploratory fash-
ion and found that girls and academic-track students invested more time in writing 
extended responses. Test designers selecting test items should be aware of such ad-
ditional infl uences on response time. Booklets with a disproportionately high num-
ber of such items may diff erentially aff ect the response times of students in specif-
ic educational tracks. However, we would like to suggest that test administrators 
carefully consider the political implications of allocating diff erent times to sub-
groups because questions of test fairness may emerge. Furthermore, student es-
timates from studies with diff erent time restrictions may be diffi  cult to compare. 

θσ



A model for the estimation of testlet response time

47JERO, Vol. 9, No. 1 (2017)

However, using the fi nal prediction formula to assemble and optimize test booklets 
that are administered to all students from a certain population should not be prob-
lematic.

To validate our empirically derived prediction formula, a second sample of stu-
dents worked on a diff erent set of science testlets. Applying Equation 5 and com-
paring predicted and empirical response times yielded an average underestima-
tion of -12.4 %. This prediction bias might have several reasons as Study 1 and 
Study 2 diff ered in certain aspects, for instance, students’ grade (9 vs. 10) and test 
length (60 min vs. 40 min). Further, diff erent competences were measured in the 
two studies. Whereas testlets that measured content knowledge and scientifi c in-
quiry were used in the original sample, in the validation study (Study 2), the com-
petence in question was decision making in science. Such items require test-takers 
to thoroughly elaborate on a decision or an evaluation, a process that appears to 
be more time-consuming than answering the Study 1 items, which assessed knowl-
edge about science and scientifi c procedures. An inspection of students’ responses 
to the extended response items suggested that students indeed wrote more when 
they  answered items from the domain decision making. Such a potential eff ect of 
the content domain is undeniably one of the major threats to the chosen predic-
tion model because the response type extended response is just a rough proxy for 
the actual amount of text that is produced. Depending on the competence that is 
measured or on other (unknown) variables, there might be nontrivial variation 
in the amount of text students produce. In other words, generalizability to other 
competence domains might be limited and users should exercise caution when ap-
plying the prediction formula to very diff erent content domains. However, as our 
validation study showed, within a relatively wide range of competencies (content 
knowledge, scientifi c inquiry, and decision making) the formula works quite well. 
Of course, it is not applicable if items are not in either multiple choice, short re-
sponse, or extended response format.

Moreover, the results of the present study may not generalize to populations 
other than German-speaking students or students in Grade 9. Sentences in oth-
er languages might be either more concise or lengthier and thus faster or slow-
er to read and write. Furthermore, younger (e.g., primary school) students might 
be much slower at reading the same amount of text. A further limitation was the 
use of response times from paper-and-pencil assessments because such measure-
ments are less precise in comparison with a computer-based assessment. On the 
other hand, using computer-based response times to construct paper-and-pencil 
tests is also not a feasible option as mode eff ects may jeopardize the validity of the 
mea surement and lead to severe biases. More research is needed to investigate and 
predict mode eff ects on response times and to describe their implications. Further, 
potentially less precise paper-and-pencil response times would just add “noise” to 
the relations under investigation. Thus, relations would appear smaller than they 
actually were if response time measurement was accurate. Given the large amount 
of explained variance (94.3 %), it is reasonable to assume that our measurements 
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were quite accurate. Still, the reported results are lower boundaries and may even 
be more pronounced in other studies with even higher measurement precision.

In this study, we used a modeling approach that explicitly allowed us to divide 
the response time variance into variance accounted for by items and variance ac-
counted for by persons. The presented mixed models off er three methodological 
advantages over the often-used standard regression analyses. First, mixed models 
enabled us to consider Testlet × Student interactions that could provide addition-
al information for test construction. Second, mixed models can adequately account 
for the data structure in large-scale assessments where students work on diff er-
ent item subsets assembled in various booklets. Third, mixed models off ered high-
er test power because the response time data were not aggregated (and thus not re-
duced) across persons or items. In other words, more data points were available 
for the estimation of model parameters. A limitation of our models is the assump-
tion of equal testlet variances (homoscedasticity). Within our modeling framework, 
this assumption could have been easily tested. We did not pursue this, because for 
the purpose of predicting mean testlet response time it is – or should be – rather 
irrelevant. Modeling heteroscedasticity would have merely improved model fi t, but 
fi xed eff ects parameters would have been approximately the same. Furthermore, in 
our models, we fi xated the eff ect of number of items to allow for a certain interpre-
tation of eff ects (i.e., deviation of a certain response format from the mean time of 
a testlet with a certain number of items). Other models are imaginable where num-
ber of items is excluded. This would just change the interpretation of the response 
format eff ects, but would otherwise result in similar eff ects after converting them 
accordingly.

Another important methodological issue was the criterion that was targeted in 
our prediction model. In line with other studies, we predicted the mean response 
time. This implies that 50 % of the students will complete the testlet in this amount 
of time, and 50 % will not (under the assumption of a normal distribution). Test 
administrators should consider whether the mean response time is the correct 
choice for the specifi c application of the test. One may argue that some other cri-
terion will off er a worthwhile alternative. For instance, it may be reasonable to en-
able 90 % of the students to complete the testlet, in which case the .90 quantile of 
the response time distribution would be chosen. A related – and rarely discussed – 
issue is the aggregation of item or testlet response time into booklet response time. 
Here, the standard approach is to sum the response times across items or testlets 
to derive the booklet response time, which equals the time that is available per stu-
dent. This technique might not work for all criteria because students’ rank ordering 
of response times will change from testlet to testlet if their correlations are below 1 
(which is usually the case). This implies that testlet time cannot simply be added to 
calculate booklet time if certain criteria are used. For instance, if 90 % of the stu-
dents are expected to complete their booklets, it is not correct to sum the .90 quan-
tiles of the testlets that comprise the booklet. Instead, some lower quantile would 
be the right choice in this case. Further research is needed to identify the testlet 
quantiles that lead to a certain target quantile at the booklet level.
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To conclude, the present study provides an empirically derived formula for the 
prediction of response times for items, stimuli, and testlets for paper-and-pen-
cil tests. Although the prediction was not perfect and generalizability is limited, 
its simplicity and cost effi  ciency compensates for these limitations. Besides, re-
sponse times are indispensable for the construction of test instruments in large-
scale assessments and have to be gauged somehow. Our prediction formula off ers 
a convenient way and might even outperform other methods such as expert rat-
ings. However, users should carefully gauge if this prediction formula is suitable 
for their populations of persons and items. If predictions seem implausible, do not 
use them!
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