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Abstract

This paper contains a discussion of partial least squares (PLS) path modeling with latet

constructs as a general method for research on educational achievement. To the extent that
such research requires the analysis of comparatively large andcomplex models under mild

supplementary assumptions, PLS is an extremely flexible and powerful tool for statisticd

model building. The formal specification, estimation, and evaluation of PLS models $

described with special emphasis on the features that distinguish PLS from other methods for
path analysis. This specifically concerns distribution-free least squares estimation aml

distribution-free model evaluation using jackknife techniques.

1 Introduction

Educational researchers frequently work in a situation with massive amounts of
data, but relative scarcity of theoretical knowledge. In such a problem area,
partial least squares (PLS) path analysis with latent constructs is a useful and
flexible tool for statistical model building. The use of PLS may be considered
especially when the research situation at hand demands the investigation of
complex models in an exploratory rather than a confirmatory fashion.

Such situations would appear to be not uncommon especially, in educational
research focusing on the complex ways in which different school, class,
teacher, and student characteristics influence educational achievement. The
theoretical framework of such research typically involves latent constructs such
as home background and attitude toward school. A set of hypotheses concerning
possible ways in which these constructs might be related to each other as well
as hypotheses about possible ways in which various constructs would be
expected to influence educational outcomes are included. The researcher then
seeks to explore the validity of the set of initial assertions on the basis of the
data being collected. This concerns the structure of the constructs as well as the
relationships between constructs. That is, observed or manifest variables would
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be grouped together to form specific constructs, and the relationships between
constructs would be specified in terms of paths representing direct effects. The
ensuing model would then be examined in terms of the extent to which the data
support the initial specification and, depending on the empirical results, model
modifications such as a re-definition of specific constructs and the deletion or
inclusion of particular paths would be introduced to obtain a better fit. The
analysis, then, can be characterized as a series of model analyses guided by
theoretical considerations and empirical evidence.

The flexibility and scope of PLS facilitates the analysis and investigation of
large and complex path models, specifically in the more exploratory fashion
sketched above. The following presentation provides a description of partial
least squares in terms of its statistical background and its use in educational
research.

2 Model Specification

PLS was developed by Wold as a general method for the estimation of path
models involving latent constructs indirectly measured by multiple indicators
(Wold 1975, 1979, 1982). For convenience's sake, the following presentation
will be restricted to what Wold (1982) calls the basic PLS design. PLS models
are formally defined by two sets of linear equations called the inner model and
the outer model. The inner model specifies the relationships between
unobserved or latent variables (LVs), and the outer model specifies the
relationships between LVs and their associated observed or manifest variables
(MVs). Without loss of generality, it can be assumed that LVs and MVs are
scaled to zero means so that location parameters can be discarded in the
following equations. The inner model connecting latent variables can be written
as:

where r, symbolizes a (g x n) matrix of endogenous LVs and € a (h x n) matrix
of exogenous LVs, with n denoting the number of cases. B and T" are (g X Q)
and (g x h) coefficient matrices respectively, and ¢ denotes the (g x n) matrix
of inner model residuals. The basic PLS design assumes recursive inner
structures. The LVs can then be arranged such that the matrix B is lower
triangular with zero diagonal elements. The inner model (1) is subject to
predictor specification:
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E(n*n;€) = nB + &T (2)

This implies E(£¢") = 0 and E(n¢") = ¢, with ¢¢" being a (g x g) diagonal
matrix. That is, the inner model is assumed to constitute a causal chain system
with uncorrelated residuals. It is also assumed that the residual belonging to a
given endogenous LV is uncorrelated with the corresponding predictor LVs.
The outer model equation for the endogenous LVs is given by:

y=1[n+¢e 3)

where y symbolizes a (m x n) matrix of manifest variables related to the LVs
by the coefficients given (m x g) matrix [], and where e, denotes the
associated matrix of outer model residuals. A similar equation defines the outer
model relationships for the exogenous LVs involved in the model.

The MVs are generally assumed to be grouped into disjoint blocks, with each
block representing one LV. That is, each MV is assumed to belong to just one
LV and, hence, each row of [ ], contains just one non-zero element, while all
other row entries are assumed to be zero. Following factor analytic
terminology, these non-zero elements are called loadings. Since the loadings
and the LVs are unknown, some standardization is necessary to avoid scale
ambiguity. As a general rule, all LVs are assumed to be scaled to unit variance;
i.e. VAR(n,) = 1. Similar to the inner model, predictor specification is
adopted for the outer model. As applied to equation (3), this yields:

E(y-n) = [0 (4)

This equation involves the assumption that the outer model residuals are
uncorrelated with all LVs and with the inner model residuals.

In addition to predictor specification applied to the inner and outer model, a
fundamental principle of PLS modeling is the assumption that all information
between observables is conveyed by latent variables. This has two implications.
First, PLS models do not involve any direct relationships between MVs.
Second, the outer residuals of one block are assumed to be uncorrelated with
the outer residuals of other blocks. The latter assumption means formally that
the covariances of outer model residuals can be represented by a block diagonal
matrix with non-zero entries corresponding to the grouping of MVs into g + h
disjoint blocks. It should be noted, however, that no restrictions are imposed on
the covariances of the outer residuals within a given block of MVs.
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Given the above equations, it is possible to use the inner model equation (1) to
substitute the endogenous LVs involved in the outer model equation (3). The
result is:

y=I1nB+¢Er) +v ()

Wold (1982) calls this substitutive elimination of latent variables, or abbreviated
SELV. As can be seen from equation (5), the SELV relation connects
endogenous MVs with LVs that are indirectly related (via the inner model),
with the respective sets of manifest variables. The residuals in (5) are equal to
v = [],¢ + e, and are, by virtue of equations (2) and (4), uncorrelated with
the corresponding predictor LVSs.

3 Model Estimation

The above equations and the accompanying set of assumptions constitute the
theoretical or structural form of PLS models. The LVs, the inner model
coefficients, and the loadings are of course unknown and must be estimated.
The PLS estimation procedure proceeds in two basic steps. The first step
involves the iterative estimation of LVs as linear composites of their associated
MVs. The second step involves the non-iterative estimation of inner model and
outer model coefficients. For example, the estimated endogenous LVs are given

by:
est.(n) =Y =Wy (6)

where W, denotes a (g X k) weight matrix. We adopt the convention of denoting
the matrices of estimated LVs with capital Roman letters; the matrices of MVs
are, as before, symbolized by lower case Roman letters.

Equation (6) defines the estimated LVs as linear composites of their
associated MVs. Each column of W, contains just one non-zero entry, and the
weights are chosen so as to give the estimated LVs unit variance.

The estimated LVs defined above are in the second step of PLS estimation
that is used to compute the loadings and inner model coefficients by means of
standard least squares methods. The loadings are simply defined as zero-order
correlations between MVs and their associated LVs. The inner model
coefficients are estimated using standard path analytical procedures. That is, for
recursive inner models, the respective path coefficients connecting LVs are
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obtained by ordinary least squares (OLS) regression applied to each inner model
relation separately.

The core of the PLS procedure is obviously the determination of the weights
defining LV estimates. These weights are obtained iteratively by means of
series of OLS regressions applied to each block of MVs. A distinction is made
between two modes of weight estimation called inward mode and outward
mode. Since it is not possible here to give a detailed description of the PLS
iteration procedure, the reader is referred to Wold (1982) for an exposition of
PLS weight estimation. Let it suffice to say that the estimation of outward
blocks is based on an iterative sequence of simple OLS regressions where the
MVs are considered dependent variables. Inward blocks are estimated by means
of series of multiple OLS regressions where the MVs are considered
independent variables.

It should be noted that the distinction between outward and inward blocks
corresponds to the differentiation between reflective and formative indicators
made by Hauser (1973). Following this differentiation, outward indicators are
assumed to reflect rather than to determine a latent dimension. An example
would be a set of attitude items which are used as indicators of some attitudinal
dimension such as a more positive or more negative attitude toward school.
Such indicators are ‘reflective’ because changing student answers to some
attitude items would not cause changes of the attitude being measured. Inward
or formative indicators, on the other hand, can be assumed to form or produce
the associated latent dimension. A typical example would be a specific teaching
style measured by a variety of teacher behaviors. Such indicators can be
considered inward because changes of the manifest teaching behaviors would
cause changes in the teaching style.

As shown by Wold (1982), one-block PLS models estimated by the outward
mode are numerically and analytically equivalent to the first principal
component. Also, two-block PLS models where both blocks are estimated by
the inward mode are equivalent to a canonical correlation analysis in that the
ensuing correlation between the two LVs is equal to the first canonical
correlation. Being special cases of PLS, principle component and canonical
correlation analysis can be considered basic modules on which the analysis of
larger models is based. As noted by Noonan and Wold (1988), PLS has in fact
been developed as a generalization of these methods toward the formulation and
estimation of more complex path models.

It should also be noted that two-block PLS models, where the exogenous
block is estimated by the inward mode and where the endogenous block is
estimated by the outward mode, can be considered another basic module of
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PLS. This type of model has been considered by Hauser and Goldberger (1971)
a so called multiple causes - multiple indicators model. While Hauser and
Goldberger developed maximum likelihood estimates, it can be shown that PLS
applied to this type of model provides a least squares solution equivalent to what
Van den Wollenberg (1977) calls redundancy analysis.

In general terms, the PLS approach merges the basic modules mentioned
above in order to estimate more complex path models involving more than two
LVs. The estimation process is entirely based on least squares methods being
applied under the restrictions imposed by the formulation of inner and outer
model relationships. As the focus is on least squares prediction of LVs and
MVs, PLS is generally referred to as a ‘prediction oriented® approach.
Furthermore, since PLS makes use of least squares methods which do not
necessarily require stringent assumptions about the distribution of variables,
residuals and parameters, Wold (1982) refers to PLS as a ’soft modeling’
approach in the sense that PLS does not require restrictive assumptions
prevalent to other methods of latent variable path analysis of which the most
important is LISREL (Joreskog 1973; Joreskog & Sérbom 1978).

4 Model Evaluation

As mentioned above, PLS basically aims to predicit least squares of endogenous
LVs and MVs, subject to constraints imposed by the specification of inner and
outer model relationships. It will also be recalled from the preceding discussion
that predictor specification as applied to inner and outer model relationships
constitutes an integral part of the theoretical form of PLS models. Hence, apart
from the examination of point estimates (i.e., weights, loadings, and inner
model path coefficients), an important part of model evaluation is the
examination of fit indices reflecting the predictive power of estimated inner and
outer model relationships. Such fit indices can be derived readily from the
various inner and outer model equations presented above. For example, R?
values familiar from multiple regression can be obtained for the inner model
relationships. Similarly, so-called communality and redundancy coefficients can
be obtained for outer model relations. Communality coefficients are equal to
the squared correlations between MVs and their associated LVs and are thus
similarly defined as the communalities familiar from standard factor analysis
procedures. Redundancy coefficients are derived from the afore mentioned
substitutive elimination of latent variables and reflect the joint predictive power
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of the inner and outer model relationships being investigated (see, for example,
Lohmoeller 1981 for a complete discussion of fit indices).

The statistics referred to above can be used in essentially the same way as the
familiar R* computed for multiple regression equations. They reflect the
relative amount of “explained” or *reproduced® variance of LVs and MVs. Two
options are available if the researcher wants to go beyond model evaluation in
purely descriptive terms. One option is to adopt the distributional assumptions
on which the computation of classical estimates of standard errors and F-tests
are based and to apply standard significance tests. This approach has been used
by Noonan and Wold (1983), for example. It should be reiterated, however,
that the classical distributional assumptions, notably normality and independence
of residuals, do not constitute prerequisites for PLS estimation. It may thus be
regarded as inappropriate to adopt them post hoc in order to evaluate the model
results. In practice, it is also often the case that the classical assumptions would
appear highly unrealistic so that it would make little sense to employ standard
test statistics.

Since PLS provides estimated case values of LVs and estimated case values
of inner and outer residuals, less demanding statistical techniques such as
jackknifing (Tukey 1977) can be used. Wold (1982) specifically proposed the
general use of the Stone-Geisser test of predictive relevance (Stone 1974;
Geisser 1974). This test basically produces jackknife estimates of residual
variances while jackknife standard errors of point estimates can be obtained as
a by-product. The general idea is to omit one case at a time, to re-estimate the
model parameters on the basis of the remaining cases, and to reconstruct or
predict omitted case values using the re-estimated parameters. The extent to
which this prediction exercise is successful can be measured by the Q? statistic
proposed by Ball (1963). As applied to i = 1,2,...,n cases and the familiar case
of multiple regression with k regressors, Q? is computed as:

Q*=1.0- Yo (Y- kakibk(i))2 I yn (Y- Y-(i))2 (7)

where b, is the set of regression coefficients obtained when the i-th case is
omitted while Y.; denotes the mean of the dependent variable computed
without the i-th case. It can be seen from the equation above that Q? is nothing
else than the jackknife analogue of the familiar R?. The higher Q? is, the higher
the predictive relevance of the tested model equation. Q? values, contrary to R?
values, may increase when predictors are deleted from the equation. This would
indicate that "noise* emanating from irrelevant of unstable predictors was
removed. Q* values may also turn out to be negative. The corresponding model
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relation is then said to be misleading because the trivial prediction in terms of
the sample mean of the dependent variable is superior to the prediction derived
from the model equation being tested.

The concept of measuring predictive relevance by means of the Q? statistic
allows straightforward extension to PLS models (see, for example, Lohmoeller
1981; Wold 1982; Sellin 1991). The corresponding procedures provide indices
of predictive relevance for inner and outer model relations as well as jackknife
standard errors of inner and outer model coefficients. These statistics do not
require any distributional assumptions and can be used to evaluate the predictive
power of the model being investigated.

5 Comparative Comments on LISREL and PLS

As pointed out by Wold (1982), PLS and LISREL are complementary rather
than competitive methods for the estimation of the same type of path models.
The LISREL approach assumes that observations are governed by a specified
multivariate distribution and offers, on this basis, a general framework for (a)
maximum likelihood estimation, (b) hypothesis testing leading to either rejection
or non-rejection of the tested model, and (c) assessment of standard errors for
the model parameters. Least squares estimation, including PLS, is distribution-
free except for predictor specification. As compared with LISREL, the
complementary characteristics of PLS are (a) least squares estimation by means
of the PLS algorithm, (b) tests of predictive relevance using jackknife
procedures leading to either non-relevance or some positive degree of predictive
relevance, and (c) jackknife estimation of standard errors (Noonan and Wold
1983).

In general, PLS is useful in research situations where exploratory model
analyses without restrictive distributional assumptions would seem appropriate.
LISREL, on the other hand, is a powerful and highly flexible statistical tool in
situations where distributional assumptions would seem justified and where
theoretical knowledge is so strong that a confirmatory analysis strategy is in
order. It should be noted, however, that PLS may still be operational in
situations when LISREL can not be used. These include the analysis of large
and complex path models where LISREL often fails to converge within
reasonable time limits as well as model analyses based on small data sets where
the sample covariance matrix is not positively definite (e.g., when the number
of MVs exceeds the number of cases).
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6 Use of Partial Least Squares

The PLS approach has been widely used in educational research and specifically
in large international research projects conducted by the International
Association for the Evaluation of Educational Achievement (IEA). Examples
of the application of PLS in educational research are provided by Noonan,
Wold (1983) and Keeves (1986), among others. Using the same body of data,
Keeves (1986) specifically compared PLS with four other approaches to path
analysis including LISREL with the result that PLS provided the most flexible
and most appropriate approach.

The Classroom Environment Study (Anderson, Ryan & Shapiro 1989) can
be considered another particularly interesting example of the use of PLS. This
IEA study involved nine countries and attempted to examine the influences of
a variety of instructional practices as well as school, teacher and student
characteristics on student achievement. Fairly large amounts of data were
obtained from various instruments including questionnaires, achievement tests,
and extensive classroom observation. After all, data for about 200 variables
were available for each country. The initial design of the study did not involve
an explicit theoretical framework as to the ways in which the variables would
be expected to be related to each other and the specific ways in which student
outcomes would be expected to be influenced. However, with data collection
under way, the need for such a conceptual framework was recognized and a
general structural model, termed the core model, was developed (Anderson et
al. 1989, pp. 22-24). This model provided a theoretical structure for the study
in that the many variables were grouped into fifteen constructs and in that the
relationships between constructs were specified. For a variety of reasons, it was
not possible to test the core model empirically. However, the core model served
as a point of departure for the formulation of various submodels which were
examined in terms of their congruence with the data being collected in diverse
countries.

One of these submodels focused primarily on variables and constructs related
to individual students such as home background, educational aspiration, attitude
toward the school and subject, entry achievement, and student perceptions of
instructional behaviors of their teachers. These models also involved a
nonrecursive or feedback relation between attitude toward the school subject
being studied and cognitive achievement in that subject. This specification was
introduced because it seemed reasonable to expect that attitude at one point in
time would influence later achievement, and that achievement, in turn, would
influence later attitude (Anderson et al. 1989, pp. 168-169). This type of
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continuous feedback processes over time can be approximated by so-called
nonrecursive path models. The basic PLS design described above was modified
by the use of two-stage least squares estimation to facilitate the examination of
nonrecursive path models. Depending on the availability of data in the
participating countries, the ensuing models involved more than ten constructs
and between sixty and eighty manifest variables. PLS was chosen as the
primary data analysis approach, not only because other methods would not
permit an examination of path models of that size, but also because
distributional assumptions prevalent to virtually all alternative methods were
judged untenable for the study.

Another, and in many ways quite different, submodel of the Classroom
Environment Study focused on variables which reflected instructional practices
and events as derived from classroom observations. The examination of these
models involved two major data analytical problems. Firstly, the observational
variables reflecting instructional practices were defined at the class level and
the number of cases involved in the analysis was thus equal to the number of
classes. Since not more than thirty classes were observed in most of the
countries, the number of cases involved in the analysis was extremely small.
Secondly, the frequency distribution of many of the observational variables was
extremely skewed because specific instructional behaviors were exhibited by
just a few teachers or because these behaviors occurred very infrequently. As
a consequence, the possibility that statistical relationships could be strongly
influenced by seemingly outlying cases had to be considered.

With regard to the analysis of teaching behaviors, the initial design of the
Classroom Environment Study was closely related to what is commonly
referred to as process-product research (see, for example, Dunkin & Biddle
1974). This type of research typically focuses on the examination of zero-order
correlations between variables reflecting teaching practices (process) and
specific measures of educational outcomes (product). Statistically significant
correlations are then often clustered together to suggest that the corresponding
behaviors represent effective teaching styles.

For the Classroom Environment Study, the use of PLS allowed going beyond
an examination of simple zero-order correlations in that more complex and
theoretically more adequate models could be tested at least for those countries
involving more than 30 classes. Also, extensive use was made of jackknife
techniques as a safeguard against drawing conclusions from statistical
relationships which were heavily influenced by just a few outlying cases. These
Jjackknife methods were also seen as more appropriate than standard statistical
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tests because the underlying assumptions required to carry out such tests were
clearly not fulfilled.

The Classroom Environment Study demonstrates the broad scope of PLS
analyses, especially in situations when more common methods of data analysis
can hardly be applied. This specifically concerns the flexibility in more
exploratory analyses of larger models as well as path analyses which have to
deal with relatively small numbers of cases and somewhat problematical
characteristics of the data to be analyzed.

7 Conclusion

Partial least squares is a flexible and extremely powerful technique for the
examination of path models with latent constructs measured by multiple
indicators. It is distribution-free except for predictor specification and, thus,
requires much less stringent assumptions than other approaches to latent
variable path analysis. PLS also allows the use of distribution-free jackknife
techniques for the evaluation of statistical relationships. These methods do not
require the strict assumptions prevalent to classical significance testing. These
unique features of PLS facilitate the analysis of complex models even under
circumstances that would cause other methods to fail to produce reasonable
results. As such circumstances would appear to be quite common in research
on educational achievement, PLS may be considered useful for many
researchers working in the field.
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